skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Title: 2021 ASEE Virtual Annual Conference Content Access
This poster presents the use of Augmented Reality (AR) and Virtual Reality (VR) to tackle 4 amongst the “14 Grand Challenges for Engineering in the 21st Century” identified by National Academy of Engineering. AR and VR are the technologies of the present and the future. AR creates a composite view by adding digital content to a real world view, often by using the camera of a smartphone and VR creates an immersive view where the user’s view is often cut off from the real world. The 14 challenges identify areas of science and technology that are achievable and sustainable to assist people and the planet to prosper. The 4 challenges tackled using AR/VR application in this poster are: Enhance virtual reality, Advance personalized learning, Provide access to clean water, and Make solar energy affordable. The solar system VR application is aimed at tackling two of the engineering challenges: (1) Enhance virtual reality and (2) Advance personalized learning. The VR application assists the user in visualizing and understanding our solar system by using a VR headset. It includes an immersive 360 degree view of our solar system where the user can use controllers to interact with celestial bodies-related information and to teleport to different points in the space to have a closer look at the planets and the Sun. The user has six degrees of freedom. The AR application for water tackles the engineering challenge: “Provide access to clean water”. The AR water application shows information on drinking water accessibility and the eco-friendly usage of bottles over plastic cups within the department buildings inside Auburn University. The user of the application has an augmented view of drinking water information on a smartphone. Every time the user points the smartphone camera towards a building, the application will render a composite view with drinking water information associated to the building. The Sun path visualization AR application tackles the engineering challenge: “Make solar energy affordable”. The application helps the user visualize sun path at a selected time and location. The sun path is augmented in the camera view of the device when the user points the camera towards the sky. The application provides information on sun altitude and azimuth. Also, it provides the user with sunrise and sunset data for a selected day. The information provided by the application can aid the user with effective solar panel placement. Using AR and VR technology to tackle these challenges enhances the user experience. The information from these applications are better curated and easily visualized, thus readily understandable by the end user. Therefore, usage of AR and VR technology to tackle these type of engineering challenges looks promising.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Poster: Use of Augmented Reality (AR) and Virtual Reality(VR) to tackle 4 amongst the ”14 Grand Challenges for Engineering in the 21st Century” identified by National Academy of Engineering
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dini, Petre (Ed.)
    The National Academy of Engineering’s “Fourteen Grand Challenges for Engineering in the Twenty-First Century” identifies challenges in science and technology that are both feasible and sustainable to help people and the planet prosper. Four of these challenges are: advance personalized learning, enhance virtual reality, make solar energy affordable and provide access to clean water. In this work, the authors discuss developing of applications using immersive technologies, such as Virtual Reality (VR) and Augmented Reality (AR) and their significance in addressing four of the challenges. The Drinking Water AR mobile application helps users easily locate drinking water sources inside Auburn University (AU) campus, thus providing easy access to clean water. The Sun Path mobile application helps users visualize Sun’s path at any given time and location. Students study Sun path in various fields but often have a hard time visualizing and conceptualizing it, therefore the application can help. Similarly, the application could possibly assist the users in efficient solar panel placement. Architects often study Sun path to evaluate solar panel placement at a particular location. An effective solar panel placement helps optimize degree of efficiency of using the solar energy. The Solar System Oculus Quest VR application enables users in viewing all eight planets and the Sun in the solar system. Planets are simulated to mimic their position, scale, and rotation relative to the Sun. Using the Oculus Quest controllers, disguised as human hands in the scene, users can teleport within the world view, and can get closer to each planet and the Sun to have a better view of the objects and the text associated with the objects. As a result, tailored learning is aided, and Virtual Reality is enhanced. In a camp held virtually, due to Covid-19, K12 students were introduced to the concept and usability of the applications. Likert scales metric was used to assess the efficacy of application usage. The data shows that participants of this camp benefited from an immersive learning experience that allowed for simulation with inclusion of VR and AR. 
    more » « less
  2. null (Ed.)
    Advancements in Artificial Intelligence (AI), Information Technology, Augmented Reality (AR) and Virtual Reality (VR), and Robotic Automation is transforming jobs in the Architecture, Engineering and Construction (AEC) industries. However, it is also expected that these technologies will lead to job displacement, alter skill profiles for existing jobs, and change how people work. Therefore, preparing the workforce for an economy defined by these technologies is imperative. This ongoing research focuses on developing an immersive learning training curriculum to prepare the future workforce of the building industry. In this paper we are demonstrating a prototype of a mobile AR application to deliver lessons for training in robotic automation for construction industry workers. The application allows a user to interact with a virtual robot manipulator to learn its basic operations. The goal is to evaluate the effectiveness of the AR application by gauging participants' performance using pre and post surveys. 
    more » « less
  3. As augmented and virtual reality (AR/VR) technology matures, a method is desired to represent real-world persons visually and aurally in a virtual scene with high fidelity to craft an immersive and realistic user experience. Current technologies leverage camera and depth sensors to render visual representations of subjects through avatars, and microphone arrays are employed to localize and separate high-quality subject audio through beamforming. However, challenges remain in both realms. In the visual domain, avatars can only map key features (e.g., pose, expression) to a predetermined model, rendering them incapable of capturing the subjects’ full details. Alternatively, high-resolution point clouds can be utilized to represent human subjects. However, such three-dimensional data is computationally expensive to process. In the realm of audio, sound source separation requires prior knowledge of the subjects’ locations. However, it may take unacceptably long for sound source localization algorithms to provide this knowledge, which can still be error-prone, especially with moving objects. These challenges make it difficult for AR systems to produce real-time, high-fidelity representations of human subjects for applications such as AR/VR conferencing that mandate negligible system latency. We present Acuity, a real-time system capable of creating high-fidelity representations of human subjects in a virtual scene both visually and aurally. Acuity isolates subjects from high-resolution input point clouds. It reduces the processing overhead by performing background subtraction at a coarse resolution, then applying the detected bounding boxes to fine-grained point clouds. Meanwhile, Acuity leverages an audiovisual sensor fusion approach to expedite sound source separation. The estimated object location in the visual domain guides the acoustic pipeline to isolate the subjects’ voices without running sound source localization. Our results demonstrate that Acuity can isolate multiple subjects’ high-quality point clouds with a maximum latency of 70 ms and average throughput of over 25 fps, while separating audio in less than 30 ms. We provide the source code of Acuity at: 
    more » « less
  4. Smartphones have recently become a popular platform for deploying the computation-intensive virtual reality (VR) applications, such as immersive video streaming (a.k.a., 360-degree video streaming). One specific challenge involving the smartphone-based head mounted display (HMD) is to reduce the potentially huge power consumption caused by the immersive video. To address this challenge, we first conduct an empirical power measurement study on a typical smartphone immersive streaming system, which identifies the major power consumption sources. Then, we develop QuRate, a quality-aware and user-centric frame rate adaptation mechanism to tackle the power consumption issue in immersive video streaming. QuRate optimizes the immersive video power consumption by modeling the correlation between the perceivable video quality and the user behavior. Specifically, QuRate builds on top of the user’s reduced level of concentration on the video frames during view switching and dynamically adjusts the frame rate without impacting the perceivable video quality. We evaluate QuRate with a comprehensive set of experiments involving 5 smartphones, 21 users, and 6 immersive videos using empirical user head movement traces. Our experimental results demonstrate that QuRate is capable of extending the smartphone battery life by up to 1.24X while maintaining the perceivable video quality during immersive video streaming. Also, we conduct an Institutional Review Board (IRB)- approved subjective user study to further validate the minimum video quality impact caused by QuRate. 
    more » « less
  5. Immersive Learning Environments (ILEs) developed in Virtual and Augmented Reality (VR/AR) are a novel pro- fessional training platform. An ILE can facilitate an Adaptive Learning System (ALS), which has proven beneficial to the learning process. However, there is no existing AI-ready ILE that facilitates collecting multimedia multimodal data from the environment and users for training AI models, nor allows for the learning contents and complex learning process to be dynamically adapted by an ALS. This paper proposes a novel multimedia system in VR/AR to dynamically build ILEs for a wide range of use-cases, based on a description language for the generalizable ILE structure. It will detail users’ paths and conditions for completing learning activities, and a content adaptation algorithm to update the ILE at runtime. Human and AI systems can customize the environment based on user learning metrics. Results show that this framework is efficient and low- overhead, suggesting a path to simplifying and democratizing the ILE development without introducing bloat. Index Terms—virtual reality, augmented reality, content generation, immersive learning, 3D environments 
    more » « less