skip to main content


Title: Integrating three-loop modular graph functions and transcendentality of string amplitudes
A bstract Modular graph functions (MGFs) are SL(2 , ℤ)-invariant functions on the Poincaré upper half-plane associated with Feynman graphs of a conformal scalar field on a torus. The low-energy expansion of genus-one superstring amplitudes involves suitably regularized integrals of MGFs over the fundamental domain for SL(2 , ℤ). In earlier work, these integrals were evaluated for all MGFs up to two loops and for higher loops up to weight six. These results led to the conjectured uniform transcendentality of the genus-one four-graviton amplitude in Type II superstring theory. In this paper, we explicitly evaluate the integrals of several infinite families of three-loop MGFs and investigate their transcendental structure. Up to weight seven, the structure of the integral of each individual MGF is consistent with the uniform transcendentality of string amplitudes. Starting at weight eight, the transcendental weights obtained for the integrals of individual MGFs are no longer consistent with the uniform transcendentality of string amplitudes. However, in all the cases we examine, the violations of uniform transcendentality take on a special form given by the integrals of triple products of non-holomorphic Eisenstein series. If Type II superstring amplitudes do exhibit uniform transcendentality, then the special combinations of MGFs which enter the amplitudes must be such that these integrals of triple products of Eisenstein series precisely cancel one another. Whether this indeed is the case poses a novel challenge to the conjectured uniform transcendentality of genus-one string amplitudes.  more » « less
Award ID(s):
1914412
NSF-PAR ID:
10345091
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
2
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We study the four-point function of the lowest-lying half-BPS operators in the $$ \mathcal{N} $$ N = 4 SU( N ) super-Yang-Mills theory and its relation to the flat-space four-graviton amplitude in type IIB superstring theory. We work in a large- N expansion in which the complexified Yang-Mills coupling τ is fixed. In this expansion, non-perturbative instanton contributions are present, and the SL(2 , ℤ) duality invariance of correlation functions is manifest. Our results are based on a detailed analysis of the sphere partition function of the mass-deformed SYM theory, which was previously computed using supersymmetric localization. This partition function determines a certain integrated correlator in the undeformed $$ \mathcal{N} $$ N = 4 SYM theory, which in turn constrains the four-point correlator at separated points. In a normalization where the two-point functions are proportional to N 2 − 1 and are independent of τ and $$ \overline{\tau} $$ τ ¯ , we find that the terms of order $$ \sqrt{N} $$ N and $$ 1/\sqrt{N} $$ 1 / N in the large N expansion of the four-point correlator are proportional to the non-holomorphic Eisenstein series $$ E\left(\frac{3}{2},\tau, \overline{\tau}\right) $$ E 3 2 τ τ ¯ and $$ E\left(\frac{5}{2},\tau, \overline{\tau}\right) $$ E 5 2 τ τ ¯ , respectively. In the flat space limit, these terms match the corresponding terms in the type IIB S-matrix arising from R 4 and D 4 R 4 contact inter-actions, which, for the R 4 case, represents a check of AdS/CFT at finite string coupling. Furthermore, we present striking evidence that these results generalize so that, at order $$ {N}^{\frac{1}{2}-m} $$ N 1 2 − m with integer m ≥ 0, the expansion of the integrated correlator we study is a linear sum of non-holomorphic Eisenstein series with half-integer index, which are manifestly SL(2 , ℤ) invariant. 
    more » « less
  2. null (Ed.)
    A bstract The full two-loop amplitudes for five massless states in Type II and Heterotic superstrings are constructed in terms of convergent integrals over the genus-two moduli space of compact Riemann surfaces and integrals of Green functions and Abelian differentials on the surface. The construction combines elements from the BRST cohomology of the pure spinor formulation and from chiral splitting with the help of loop momenta and homology invariance. The α ′ → 0 limit of the resulting superstring amplitude is shown to be in perfect agreement with the previously known amplitude computed in Type II supergravity. Investigations of the α ′ expansion of the Type II amplitude and comparisons with predictions from S-duality are relegated to a first companion paper. A construction from first principles in the RNS formulation of the genus-two amplitude with five external NS states is relegated to a second companion paper. 
    more » « less
  3. Carrollian holography is supposed to describe gravity in four-dimensional asymptotically flat space-time by the three-dimensional Carrollian CFT living at null infinity. We transform superstring scattering amplitudes into the correlation functions of primary fields of Carrollian CFT depending on the three-dimensional coordinates of the celestial sphere and a retarded time coordinate. The power series in the inverse string tension is converted to a whole tower of both UV and IR finite descendants of the underlying field-theoretical Carrollian amplitude. We focus on four-point amplitudes involving gauge bosons and gravitons in type I open superstring theory and in closed heterotic superstring theory at the tree-level. We also discuss the limit of infinite retarded time coordinates, where the string world-sheet becomes celestial. 
    more » « less
  4. null (Ed.)
    A bstract Elliptic modular graph functions and forms (eMGFs) are defined for arbitrary graphs as natural generalizations of modular graph functions and forms obtained by including the character of an Abelian group in their Kronecker-Eisenstein series. The simplest examples of eMGFs are given by the Green function for a massless scalar field on the torus and the Zagier single-valued elliptic polylogarithms. More complicated eMGFs are produced by the non-separating degeneration of a higher genus surface to a genus one surface with punctures. eMGFs may equivalently be represented by multiple integrals over the torus of combinations of coefficients of the Kronecker-Eisenstein series, and may be assembled into generating series. These relations are exploited to derive holomorphic subgraph reduction formulas, as well as algebraic and differential identities between eMGFs and their generating series. 
    more » « less
  5. A<sc>bstract</sc>

    The summation over spin structures, which is required to implement the GSO projection in the RNS formulation of superstring theories, often presents a significant impediment to the explicit evaluation of superstring amplitudes. In this paper we discover that, for Riemann surfaces of genus two and even spin structures, a collection of novel identities leads to a dramatic simplification of the spin structure sum. Explicit formulas for an arbitrary number of vertex points are obtained in two steps. First, we show that the spin structure dependence of a cyclic product of Szegö kernels (i.e. Dirac propagators for worldsheet fermions) may be reduced to the spin structure dependence of the four-point function. Of particular importance are certaintrilinear relationsthat we shall define and prove. In a second step, the known expressions for the genus-two even spin structure measure are used to perform the remaining spin structure sums. The dependence of the spin summand on the vertex points is reduced to simple building blocks that can already be identified from the two-point function. The hyper-elliptic formulation of genus-two Riemann surfaces is used to derive these results, and its SL(2,ℂ) covariance is employed to organize the calculations and the structure of the final formulas. The translation of these results into the language of Riemannϑ-functions, and applications to the evaluation of higher-point string amplitudes, are relegated to subsequent companion papers.

     
    more » « less