skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improving Deep Learning for Maritime Remote Sensing through Data Augmentation and Latent Space
Training deep learning models requires having the right data for the problem and understanding both your data and the models’ performance on that data. Training deep learning models is difficult when data are limited, so in this paper, we seek to answer the following question: how can we train a deep learning model to increase its performance on a targeted area with limited data? We do this by applying rotation data augmentations to a simulated synthetic aperture radar (SAR) image dataset. We use the Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction technique to understand the effects of augmentations on the data in latent space. Using this latent space representation, we can understand the data and choose specific training samples aimed at boosting model performance in targeted under-performing regions without the need to increase training set sizes. Results show that using latent space to choose training data significantly improves model performance in some cases; however, there are other cases where no improvements are made. We show that linking patterns in latent space is a possible predictor of model performance, but results require some experimentation and domain knowledge to determine the best options.  more » « less
Award ID(s):
2108791
PAR ID:
10345174
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Machine Learning and Knowledge Extraction
Volume:
4
Issue:
3
ISSN:
2504-4990
Page Range / eLocation ID:
665 to 687
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Deep learning approaches currently achieve the state-of-the-art results on camera-based vital signs measurement. One of the main challenges with using neural models for these applications is the lack of sufficiently large and diverse datasets. Limited data increases the chances of overfitting models to the available data which in turn can harm generalization. In this paper, we show that the generalizability of imaging photoplethysmography models can be improved by augmenting the training set with "magnified" videos. These augmentations are specifically designed to reveal useful features for recovering the photoplethysmogram. We show that using augmentations of this form is more effective at improving model robustness than other commonly used data augmentation approaches. We show better within-dataset and especially cross-dataset performance with our proposed data augmentation approach on three publicly available datasets. 
    more » « less
  2. Abstract NLP has achieved great progress in the past decade through the use of neural models and large labeled datasets. The dependence on abundant data prevents NLP models from being applied to low-resource settings or novel tasks where significant time, money, or expertise is required to label massive amounts of textual data. Recently, data augmentation methods have been explored as a means of improving data efficiency in NLP. To date, there has been no systematic empirical overview of data augmentation for NLP in the limited labeled data setting, making it difficult to understand which methods work in which settings. In this paper, we provide an empirical survey of recent progress on data augmentation for NLP in the limited labeled data setting, summarizing the landscape of methods (including token-level augmentations, sentence-level augmentations, adversarial augmentations, and hidden-space augmentations) and carrying out experiments on 11 datasets covering topics/news classification, inference tasks, paraphrasing tasks, and single-sentence tasks. Based on the results, we draw several conclusions to help practitioners choose appropriate augmentations in different settings and discuss the current challenges and future directions for limited data learning in NLP. 
    more » « less
  3. null (Ed.)
    We study overparameterization in generative adversarial networks (GANs) that can interpolate the training data. We show that overparameterization can improve generalization performance and accelerate the training process. We study the generalization error as a function of latent space dimension and identify two main behaviors, depending on the learning setting. First, we show that overparameterized generative models that learn distributions by minimizing a metric or f-divergence do not exhibit double descent in generalization errors; specifically, all the interpolating solutions achieve the same generalization error. Second, we develop a new pseudo-supervised learning approach for GANs where the training utilizes pairs of fabricated (noise) inputs in conjunction with real output samples. Our pseudo-supervised setting exhibits double descent (and in some cases, triple descent) of generalization errors. We combine pseudo-supervision with overparameterization (i.e., overly large latent space dimension) to accelerate training while performing better, or close to, the generalization performance without pseudo-supervision. While our analysis focuses mostly on linear GANs, we also apply important insights for improving generalization of nonlinear, multilayer GANs. 
    more » « less
  4. The problem of adapting models from a source domain using data from any target domain of interest has gained prominence, thanks to the brittle generalization in deep neural networks. While several test-time adaptation techniques have emerged, they typically rely on synthetic data augmentations in cases of limited target data availability. In this paper, we consider the challenging setting of single-shot adaptation and explore the design of augmentation strategies. We argue that augmentations utilized by existing methods are insufficient to handle large distribution shifts, and hence propose a new approach SiSTA (Single-Shot Target Augmentations), which first fine-tunes a generative model from the source domain using a single-shot target, and then employs novel sampling strategies for curating synthetic target data. Using experiments with a state-of-the-art domain adaptation method, we find that SiSTA produces improvements as high as 20% over existing baselines under challenging shifts in face attribute detection, and that it performs competitively to oracle models obtained by training on a larger target dataset. Our codes can be accessed at github.com/kowshikthopalli/SISTA. 
    more » « less
  5. Arctic permafrost is facing significant changes due to global climate change. As these regions are largely inaccessible, remote sensing plays a crucial rule in better understanding the underlying processes across the Arctic. In this study, we focus on the remote detection of retrogressive thaw slumps (RTSs), a permafrost disturbance comparable to slow landslides. For such remote sensing tasks, deep learning has become an indispensable tool, but limited labeled training data remains a challenge for training accurate models. We present PixelDINO, a semi-supervised learning approach, to improve model generalization across the Arctic with a limited number of labels. PixelDINO leverages unlabeled data by training the model to define its own segmentation categories (pseudoclasses), promoting consistent structural learning across strong data augmentations. This allows the model to extract structural information from unlabeled data, supplementing the learning from labeled data. PixelDINO surpasses both supervised baselines and existing semi-supervised methods, achieving average intersection-over-union (IoU) of 30.2 and 39.5 on the two evaluation sets, representing significant improvements of 13% and 21%, respectively, over the strongest existing models. This highlights the potential for training robust models that generalize well to regions that were not included in the training data. 
    more » « less