skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Single-Shot Domain Adaptation via Target-Aware Generative Augmentations
The problem of adapting models from a source domain using data from any target domain of interest has gained prominence, thanks to the brittle generalization in deep neural networks. While several test-time adaptation techniques have emerged, they typically rely on synthetic data augmentations in cases of limited target data availability. In this paper, we consider the challenging setting of single-shot adaptation and explore the design of augmentation strategies. We argue that augmentations utilized by existing methods are insufficient to handle large distribution shifts, and hence propose a new approach SiSTA (Single-Shot Target Augmentations), which first fine-tunes a generative model from the source domain using a single-shot target, and then employs novel sampling strategies for curating synthetic target data. Using experiments with a state-of-the-art domain adaptation method, we find that SiSTA produces improvements as high as 20% over existing baselines under challenging shifts in face attribute detection, and that it performs competitively to oracle models obtained by training on a larger target dataset. Our codes can be accessed at github.com/kowshikthopalli/SISTA.  more » « less
Award ID(s):
1828010
PAR ID:
10432749
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Classification models trained on data from one source may underperform when tested on data acquired from different sources due to shifts in data distributions, which limit the models’ generalizability in real-world applications. Domain adaptation methods proposed to align such shifts in source-target data distributions use contrastive learning or adversarial techniques with or without internal cluster alignment. The intracluster alignment is performed using standalone k-means clustering on image embedding. This paper introduces a novel deep clustering approach to align cluster distributions in tandem with adapting source and target data distributions. Our method learns and aligns a mixture of cluster distributions in the unlabeled target domain with those in the source domain in a unified deep representation learning framework. Experiments demonstrate that intra-cluster alignment improves classification accuracy in nine out of ten domain adaptation examples. These improvements range between 0.3% and 2.0% compared to k-means clustering of embedding and between 0.4% and 5.8% compared to methods without class-level alignment. Unlike current domain adaptation methods, the proposed cluster distribution-based deep learning provides a quantitative and explainable measure of distribution shifts in data domains. We have publicly shared the source code for the algorithm implementation. 
    more » « less
  2. Label-efficient and reliable semantic segmentation is essential for many real-life applications, especially for industrial settings with high visual diversity, such as waste sorting. In industrial waste sorting, one of the biggest challenges is the extreme diversity of the input stream depending on factors like the location of the sorting facility, the equipment available in the facility, and the time of year, all of which significantly impact the composition and visual appearance of the waste stream. These changes in the data are called “visual domains”, and label-efficient adaptation of models to such domains is needed for successful semantic segmentation of industrial waste. To test the abilities of computer vision models on this task, we present the \emph{VisDA 2022 Challenge on Domain Adaptation for Industrial Waste Sorting}. Our challenge incorporates a fully-annotated waste sorting dataset, ZeroWaste, collected from two real material recovery facilities in different locations and seasons, as well as a novel procedurally generated synthetic waste sorting dataset, SynthWaste. In this competition, we aim to answer two questions: 1) can we leverage domain adaptation techniques to minimize the domain gap? and 2) can synthetic data augmentation improve performance on this task and help adapt to changing data distributions? The results of the competition show that industrial waste detection poses a real domain adaptation problem, that domain generalization techniques such as augmentations, ensembling, etc., improve the overall performance on the unlabeled target domain examples, and that leveraging synthetic data effectively remains an open problem. See https://ai.bu.edu/visda-2022/. 
    more » « less
  3. Existing object recognition models have been shown to lack robustness in diverse geographical scenarios due to domain shifts in design and context. Class representations need to be adapted to more accurately reflect an object concept under these shifts. In the absence of training data from target geographies, we hypothesize that geographically diverse descriptive knowledge of categories can enhance robustness. For this purpose, we explore the feasibility of probing a large language model for geography-based object knowledge, and we examine the effects of integrating knowledge into zero-shot and learnable soft prompting with CLIP. Within this exploration, we propose geography knowledge regularization to ensure that soft prompts trained on a source set of geographies generalize to an unseen target set. Accuracy gains over prompting baselines on DollarStreet while training only on Europe data are up to +2.8/1.2/1.6 on target data from Africa/Asia/Americas, and +4.6 overall on the hardest classes. Competitive performance is shown vs. few-shot target training, and analysis is provided to direct future study of geographical robustness. 
    more » « less
  4. The scarcity of labeled data has traditionally been the primary hindrance in building scalable supervised deep learning models that can retain adequate performance in the presence of various heterogeneities in sample distributions. Domain adaptation tries to address this issue by adapting features learned from a smaller set of labeled samples to that of the incoming unlabeled samples. The traditional domain adaptation approaches normally consider only a single source of labeled samples, but in real world use cases, labeled samples can originate from multiple-sources – providing motivation for multi-source domain adaptation (MSDA). Several MSDA approaches have been investigated for wearable sensor-based human activity recognition (HAR) in recent times, but their performance improvement compared to single source counterpart remained marginal. To remedy this performance gap that, we explore multiple avenues to align the conditional distributions in addition to the usual alignment of marginal ones. In our investigation, we extend an existing multi-source domain adaptation approach under semi-supervised settings. We assume the availability of partially labeled target domain data and further explore the pseudo labeling usage with a goal to achieve a performance similar to the former. In our experiments on three publicly available datasets, we find that a limited labeled target domain data and pseudo label data boost the performance over the unsupervised approach by 10-35% and 2-6%, respectively, in various domain adaptation scenarios. 
    more » « less
  5. null (Ed.)
    Domain adaptation aims to correct the classifiers when faced with distribution shift between source (training) and target (test) domains. State-of-the-art domain adaptation methods make use of deep networks to extract domain-invariant representations. However, existing methods assume that all the instances in the source domain are correctly labeled; while in reality, it is unsurprising that we may obtain a source domain with noisy labels. In this paper, we are the first to comprehensively investigate how label noise could adversely affect existing domain adaptation methods in various scenarios. Further, we theoretically prove that there exists a method that can essentially reduce the side-effect of noisy source labels in domain adaptation. Specifically, focusing on the generalized target shift scenario, where both label distribution 𝑃𝑌 and the class-conditional distribution 𝑃𝑋|𝑌 can change, we discover that the denoising Conditional Invariant Component (DCIC) framework can provably ensures (1) extracting invariant representations given examples with noisy labels in the source domain and unlabeled examples in the target domain and (2) estimating the label distribution in the target domain with no bias. Experimental results on both synthetic and real-world data verify the effectiveness of the proposed method. 
    more » « less