skip to main content


Title: Small cosmological constants in string theory
A bstract We construct supersymmetric AdS 4 vacua of type IIB string theory in compactifications on orientifolds of Calabi-Yau threefold hypersurfaces. We first find explicit orientifolds and quantized fluxes for which the superpotential takes the form proposed by Kachru, Kallosh, Linde, and Trivedi. Given very mild assumptions on the numerical values of the Pfaffians, these compactifications admit vacua in which all moduli are stabilized at weak string coupling. By computing high-degree Gopakumar-Vafa invariants we give strong evidence that the α ′ expansion is likewise well-controlled. We find extremely small cosmological constants, with magnitude < 10 − 123 in Planck units. The compactifications are large, but not exponentially so, and hence these vacua manifest hierarchical scale-separation, with the AdS length exceeding the Kaluza-Klein length by a factor of a googol.  more » « less
Award ID(s):
2014071
NSF-PAR ID:
10345336
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
12
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract AdS flux vacua with a parametric separation between the AdS and KK scales have been conjectured to be in the Swampland. We study flux compactifications of massive IIA supergravity with O6 planes which are claimed to allow moduli-stabilised and scale separated AdS 3 and AdS 4 vacua at arbitrary weak coupling and large volume. A recent refinement of the AdS Distance Conjecture is shown to be inconsistent with this class of AdS 3 vacua because the requisite discrete higher form symmetries are absent. We further perform a tree-level study of non-perturbative decays for the nonsupersymmetric versions of the AdS 3 solutions, and find that the vacua are stable within this approximation. Finally, we provide an initial investigation of the would-be dual CFT 2 s and CFT 3 s. We study roughly a dozen different models and find for all AdS 4 DGKT-type vacua that the dual operators to the lightest scalars have integer dimensions. For the putative CFT 2 dual theories of the AdS 3 vacua we find no integer dimensions for the operators. 
    more » « less
  2. A bstract We revisit flux compactifications of type IIB string theory on ‘spaces’ dual to rigid Calabi-Yau manifolds. This rather unexplored part of the string landscapes harbors many interesting four-dimensional solutions, namely supersymmetric $$ \mathcal{N} $$ N = 1 Minkowski vacua without flat direction and infinite families of AdS vacua, some potentially with unrestricted rank for the gauge group. We also comment on the existence of metastable dS solutions in this setup. We discuss how these solutions fit into the web of swampland conjectures. 
    more » « less
  3. Particle physics has evolved in the past decade through evaluating the consequences of experimental measurements as well as exploiting theoretical tools that permit exploration of new model building and cosmological possibilities. Particularly due to insights from the AdS/CFT correspondence, higher-dimensional warped compactifications, in particular, have played a big role in recent developments by allowing a study of regimes of parameters that would otherwise be intractable. Similarly, theoretical developments in quantum gravity benefit from the bigger range of possibilities that can be explored using warped geometry, allowing for constructions of string vacua with positive cosmological constant and for the exploration of entanglement and information transfer in arbitrary dimensions. Puzzles remain in both more phenomenologically oriented and more theoretically oriented contexts which form the basis for a rich research program in the future as well. 
    more » « less
  4. A bstract We show that the strong CP problem is solved in a large class of compactifications of string theory. The Peccei-Quinn mechanism solves the strong CP problem if the CP-breaking effects of the ultraviolet completion of gravity and of QCD are small compared to the CP-preserving axion potential generated by low-energy QCD instantons. We characterize both classes of effects. To understand quantum gravitational effects, we consider an ensemble of flux compactifications of type IIB string theory on orientifolds of Calabi-Yau hypersurfaces in the geometric regime, taking a simple model of QCD on D7-branes. We show that the D-brane instanton contribution to the neutron electric dipole moment falls exponentially in N 4 , with N the number of axions. In particular, this contribution is negligible in all models in our ensemble with N > 17. We interpret this result as a consequence of large N effects in the geometry that create hierarchies in instanton actions and also suppress the ultraviolet cutoff. We also compute the CP breaking due to high-energy instantons in QCD. In the absence of vectorlike pairs, we find contributions to the neutron electric dipole moment that are not excluded, but that could be accessible to future experiments if the scale of supersymmetry breaking is sufficiently low. The existence of vectorlike pairs can lead to a larger dipole moment. Finally, we show that a significant fraction of models are allowed by standard cosmological and astrophysical constraints. 
    more » « less
  5. null (Ed.)
    A bstract Vacua of different gaugings of D = 4 $$ \mathcal{N} $$ N = 8 supergravity that preserve the same supersymmetries and bosonic symmetry tend to exhibit the same universal mass spectrum within their respective supergravities. For AdS 4 vacua in gauged supergravities that arise upon consistent truncation of string/M-theory, we show that this universality is lost at higher Kaluza-Klein levels. However, universality is still maintained in a milder form, at least in the graviton sector: certain sums over a finite number of states remain universal. Further, we derive a mass matrix for Kaluza-Klein gravitons which is valid for all the AdS 4 vacua in string/M-theory that uplift from the gaugings of D = 4 $$ \mathcal{N} $$ N = 8 supergravity that we consider. The mild universality of graviton mass sums is related to the trace of this mass matrix. 
    more » « less