skip to main content

Title: Physion: Evaluating Physical Prediction from Vision in Humans and Machines
While current vision algorithms excel at many challenging tasks, it is unclear how well they understand the physical dynamics of real-world environments. Here we introduce Physion, a dataset and benchmark for rigorously evaluating the ability to predict how physical scenarios will evolve over time. Our dataset features realistic simulations of a wide range of physical phenomena, including rigid and soft-body collisions, stable multi-object configurations, rolling, sliding, and projectile motion, thus providing a more comprehensive challenge than previous benchmarks. We used Physion to benchmark a suite of models varying in their architecture, learning objective, input-output structure, and training data. In parallel, we obtained precise measurements of human prediction behavior on the same set of scenarios, allowing us to directly evaluate how well any model could approximate human behavior. We found that vision algorithms that learn object-centric representations generally outperform those that do not, yet still fall far short of human performance. On the other hand, graph neural networks with direct access to physical state information both perform substantially better and make predictions that are more similar to those made by humans. These results suggest that extracting physical representations of scenes is the main bottleneck to achieving human-level and human-like physical understanding more » in vision algorithms. We have publicly released all data and code to facilitate the use of Physion to benchmark additional models in a fully reproducible manner, enabling systematic evaluation of progress towards vision algorithms that understand physical environments as robustly as people do. « less
Authors:
Award ID(s):
2123963
Publication Date:
NSF-PAR ID:
10345371
Journal Name:
ArXivorg
ISSN:
2331-8422
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract—Current state-of-the-art object tracking methods have largely benefited from the public availability of numerous benchmark datasets. However, the focus has been on open-air imagery and much less on underwater visual data. Inherent underwater distortions, such as color loss, poor contrast, and underexposure, caused by attenuation of light, refraction, and scattering, greatly affect the visual quality of underwater data, and as such, existing open-air trackers perform less efficiently on such data. To help bridge this gap, this article proposes a first comprehensive underwater object tracking (UOT100) benchmark dataset to facilitate the development of tracking algorithms well-suited for underwater environments. The proposed dataset consists of 104 underwater video sequences and more than 74 000 annotated frames derived from both natural and artificial underwater videos, with great varieties of distortions. We benchmark the performance of 20 state-of-the-art object tracking algorithms and further introduce a cascaded residual network for underwater image enhancement model to improve tracking accuracy and success rate of trackers. Our experimental results demonstrate the shortcomings of existing tracking algorithms on underwater data and how our generative adversarial network (GAN)-based enhancement model can be used to improve tracking performance. We also evaluate the visual quality of our model’s output against existing GAN-basedmore »methods using well-accepted quality metrics and demonstrate that our model yields better visual data. Index Terms—Underwater benchmark dataset, underwater generative adversarial network (GAN), underwater image enhancement (UIE), underwater object tracking (UOT).« less
  2. Mobile headsets should be capable of understanding 3D physical environments to offer a truly immersive experience for augmented/mixed reality (AR/MR). However, their small form-factor and limited computation resources make it extremely challenging to execute in real-time 3D vision algorithms, which are known to be more compute-intensive than their 2D counterparts. In this paper, we propose DeepMix, a mobility-aware, lightweight, and hybrid 3D object detection framework for improving the user experience of AR/MR on mobile headsets. Motivated by our analysis and evaluation of state-of-the-art 3D object detection models, DeepMix intelligently combines edge-assisted 2D object detection and novel, on-device 3D bounding box estimations that leverage depth data captured by headsets. This leads to low end-to-end latency and significantly boosts detection accuracy in mobile scenarios. A unique feature of DeepMix is that it fully exploits the mobility of headsets to fine-tune detection results and boost detection accuracy. To the best of our knowledge, DeepMix is the first 3D object detection that achieves 30 FPS (i.e., an end-to-end latency much lower than the 100 ms stringent requirement of interactive AR/MR). We implement a prototype of DeepMix on Microsoft HoloLens and evaluate its performance via both extensive controlled experiments and a user study with 30+more »participants. DeepMix not only improves detection accuracy by 9.1--37.3% but also reduces end-to-end latency by 2.68--9.15×, compared to the baseline that uses existing 3D object detection models.« less
  3. Interest in physical therapy and individual exercises such as yoga/dance has increased alongside the well-being trend, and people globally enjoy such exercises at home/office via video streaming platforms. However, such exercises are hard to follow without expert guidance. Even if experts can help, it is almost impossible to give personalized feedback to every trainee remotely. Thus, automated pose correction systems are required more than ever, and we introduce a new captioning dataset named FixMyPose to address this need. We collect natural language descriptions of correcting a “current” pose to look like a “target” pose. To support a multilingual setup, we collect descriptions in both English and Hindi. The collected descriptions have interesting linguistic properties such as egocentric relations to the environment objects, analogous references, etc., requiring an understanding of spatial relations and commonsense knowledge about postures. Further, to avoid ML biases, we maintain a balance across characters with diverse demographics, who perform a variety of movements in several interior environments (e.g., homes, offices). From our FixMyPose dataset, we introduce two tasks: the pose-correctional-captioning task and its reverse, the target-pose-retrieval task. During the correctional-captioning task, models must generate the descriptions of how to move from the current to the target posemore »image, whereas in the retrieval task, models should select the correct target pose given the initial pose and the correctional description. We present strong cross-attention baseline models (uni/multimodal, RL, multilingual) and also show that our baselines are competitive with other models when evaluated on other image-difference datasets. We also propose new task-specific metrics (object-match, body-part-match, direction-match) and conduct human evaluation for more reliable evaluation, and we demonstrate a large human-model performance gap suggesting room for promising future work. Finally, to verify the sim-to-real transfer of our FixMyPose dataset, we collect a set of real images and show promising performance on these images. Data and code are available: https://fixmypose-unc.github.io.« less
  4. Context is of fundamental importance to both human and machine vision; e.g., an object in the air is more likely to be an airplane than a pig. The rich notion of context incorporates several aspects including physics rules, statistical co-occurrences, and relative object sizes, among others. While previous work has focused on crowd-sourced out-of-context photographs from the web to study scene context, controlling the nature and extent of contextual violations has been a daunting task. Here we introduce a diverse, synthetic Out-of-Context Dataset (OCD) with fine-grained control over scene context. By leveraging a 3D simulation engine, we systematically control the gravity, object co-occurrences and relative sizes across 36 object categories in a virtual household environment. We conducted a series of experiments to gain insights into the impact of contextual cues on both human and machine vision using OCD. We conducted psychophysics experiments to establish a human benchmark for out-of-context recognition, and then compared it with state-of-the-art computer vision models to quantify the gap between the two. We propose a context-aware recognition transformer model, fusing object and contextual information via multi-head attention. Our model captures useful information for contextual reasoning, enabling human-level performance and better robustness in out-of-context conditions compared tomore »baseline models across OCD and other out-of-context datasets. All source code and data are publicly available at https://github.com/kreimanlab/WhenPigsFlyContext« less
  5. Abstract

    Though the range of invariance in recognition of novel objects is a basic aspect of human vision, its characterization has remained surprisingly elusive. Here we report tolerance to scale and position changes in one-shot learning by measuring recognition accuracy of Korean letters presented in a flash to non-Korean subjects who had no previous experience with Korean letters. We found that humans have significant scale-invariance after only a single exposure to a novel object. The range of translation-invariance is limited, depending on the size and position of presented objects. To understand the underlying brain computation associated with the invariance properties, we compared experimental data with computational modeling results. Our results suggest that to explain invariant recognition of objects by humans, neural network models should explicitly incorporate built-in scale-invariance, by encoding different scale channels as well as eccentricity-dependent representations captured by neurons’ receptive field sizes and sampling density that change with eccentricity. Our psychophysical experiments and related simulations strongly suggest that the human visual system uses a computational strategy that differs in some key aspects from current deep learning architectures, being more data efficient and relying more critically on eye-movements.