skip to main content


Title: Correlation of solid-state order to optoelectronic behavior in heterocyclic oligomers
A longstanding challenge in the field of optoelectronic materials, the effects of solid-state arrangement and morphology are still a prominent factor associated with small-molecule and polymer-based device performance. Here, mixed heterocyclic aromatic oligomers containing thiophene, furan and pyrazine are prepared alongside their methylated congeners. Their solution and solid-phase properties were studied via spectroscopic, electrochemical and single-crystal X-ray diffraction (XRD) analysis. Comparative analysis between solid-state packing arrangements and photophysical properties revealed optical band gaps as low as 1.7 eV with Stokes-shifts up to 130 nm and quantum yields of 12%. Results of the study aid in further understanding the effects of molecular and solid-state arrangements that give rise to unique optical and photophysical properties critical to enhancing optoelectronic behavior.  more » « less
Award ID(s):
1652094 1757220
NSF-PAR ID:
10345438
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
CrystEngComm
Volume:
24
Issue:
25
ISSN:
1466-8033
Page Range / eLocation ID:
4564 to 4572
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Understanding the structural parameters that determine the extension of π-conjugation in 2-dimensions is key for controlling the optical, photophysical, and electronic properties of 2D-π-conjugated materials. In this article, three non-slanted H-mers including a donor–acceptor H-mer (H-mer-3) with an increase in dihedral angle (twist) between the strands and rungs are synthesized and studied. These non-slanted H-mers represent the repeat units of 2D-π-conjugated materials. H-mer-3, containing donor-strands and an acceptor-rung, is an unexplored donor–acceptor architecture in both slanted and non-slanted H-mers. The H-mers displayed both acid and base dependent optical properties. While the rungs have a little impact on the H-mer absorption spectra they play a key role in the emission and fluorescence lifetime. H-mer-3 ( i.e. , donor–acceptor H-mer) shows a higher Stokes shift and fluorescence lifetime than the other two H-mers. The twist and the presence of an electron deficient rung in H-mer-3 facilitated an intramolecular charge transfer in the excited state from the strands to the electron deficient rung, and therefore control over the H-mer emission properties. The lack of insulating pendant chains, reduced π–π interactions in thinfilms, and longer fluorescence lifetimes make these H-mers interesting candidates for various electronic and optoelectronic applications. 
    more » « less
  2.  
    more » « less
  3. A family of Zn 16 Ln(HA) 16 metallacrowns (MCs; Ln = Yb III , Er III , and Nd III ; HA = picoline- (picHA 2− ), pyrazine- (pyzHA 2− ), and quinaldine- (quinHA 2− ) hydroximates) with an ‘encapsulated sandwich’ structure possesses outstanding luminescence properties in the near-infrared (NIR) and suitability for cell imaging. Here, to decipher which parameters affect their functional and photophysical properties and how the nature of the hydroximate ligands can allow their fine tuning, we have completed this Zn 16 Ln(HA) 16 family by synthesizing MCs with two new ligands, naphthyridine- (napHA 2− ) and quinoxaline- (quinoHA 2− ) hydroximates. Zn 16 Ln(napHA) 16 and Zn 16 Ln(quinoHA) 16 exhibit absorption bands extended into the visible range and efficiently sensitize the NIR emissions of Yb III , Er III , and Nd III upon excitation up to 630 nm. The energies of the lowest singlet (S 1 ), triplet (T 1 ) and intra-ligand charge transfer (ILCT) states have been determined. Ln III -centered total ( Q LLn) and intrinsic ( Q LnLn) quantum yields, sensitization efficiencies ( η sens ), observed ( τ obs ) and radiative ( τ rad ) luminescence lifetimes have been recorded and analyzed in the solid state and in CH 3 OH and CD 3 OD solutions for all Zn 16 Ln(HA) 16 . We found that, within the Zn 16 Ln(HA) 16 family, τ rad values are not constant for a particular Ln III . The close in energy positions of T 1 and ILCT states in Zn 16 Ln(picHA) 16 and Zn 16 Ln(quinHA) 16 are preferred for the sensitization of Ln III NIR emission and η sens values reach 100% for Nd III . Finally, the highest values of Q LLn are observed for Zn 16 Ln(quinHA) 16 in the solid state or in CD 3 OD solutions. With these data at hand, we are now capable of creating MCs with desired properties suitable for NIR optical imaging. 
    more » « less
  4. Abstract

    The fusion of tetrapyrroles with aromatic heterocycles constitutes a useful tool for manipulating their opto‐electronic properties. In this work, the synthesis of naphthodithiophene‐fused porphyrins was achieved through a Heck reaction‐based cascade of steps followed by the Scholl reaction. The naphthodithiophene‐fused porphyrins display a unique set of optical and electronic properties. Fusion of the naphtho[2,1‐b:3,4‐b’]dithiophene to porphyrin (F2VTP) leads to a ~20% increase in the fluorescence lifetime, which is accompanied, unexpectedly, by a more than two‐fold drop in the emission quantum yield (ϕ=0.018). In contrast, fusion of the isomeric naphtho[1,2‐b:4,3‐b’]dithiophene to porphyrin (F3VPT)results in a ~1.5‐fold increase in the fluorescence quantum yield (ϕ=0.13) with a concomitant ~30 % increase in the fluorescence lifetime. This behavior suggests that fusion of the porphyrin with the naphthodithiopheno‐system mainly affects the radiative rate constant in the Q‐state deactivation pathway, where the effects of the isomeric naphtho[2,1‐b:3,4‐b’]dithiophene‐ versus naphtho[1,2‐b:4,3‐b’]dithiophene‐fusion are essentially the opposite. Interestingly, nucleus‐independent chemical shifts analysis revealed a considerable difference between the aromaticities of these two isomeric systems. Our results demonstrate that subtle structural differences in the fused components of the porphyrin can be reflected in rather significant differences between the photophysical properties of the resulting systems.

     
    more » « less
  5. UV-irradiation of assembled urea-tethered triphenylamine dimers results in the formation of persistent radicals, whereas radicals generated in solution are reactive and quickly degrade. In the solid-state, high quantities of radicals (approximately 1 in 150 molecules) are formed with a half-life of one week with no significant change in the single crystal X-ray diffraction. Remarkably, after decay, re-irradiation of the solid sample regenerates the radicals to their original concentration. The photophysics upon radical generation are also altered. Both the absorption and emission are significantly quenched without external oxidation likely due to the delocalization of the radicals within the crystals. The factors that influence radical stability and generation are correlated to the rigid supramolecular framework formed by the urea tether of the triphenylamine dimer. Electrochemical evidence demonstrates that these compounds can be oxidized in solution at 1.0 V vs. SCE to generate radical cations, whose EPR spectra were compared with spectra of the solid-state photogenerated radicals. Additionally, these compounds display changes in emission due to solvent effects from fluorescence to phosphorescence. Understanding how solid-state assembly alters the photophysical properties of triphenylamines could lead to further applications of these compounds for magnetic and conductive materials. 
    more » « less