The energetics, coordination, and Raman vibrations of Li solvates in ionic liquid (IL) electrolytes are studied with density functional theory (DFT). Li + coordination with asymmetric anions of cyano(trifluoromethanesulfonyl)imide ([CTFSI]) and (fluorosulfonyl)(trifluoro-methanesulfonyl)imide ([FTFSI]) is examined in contrast to their symmetric analogs of bis(trifluoromethanesulfonyl)imide ([TFSI]), bis(fluorosulfonyl)imide ([FSI]), and dicyanamide ([DCA]). The dissociation energies that can be used to describe the solvation strength of Li + are calculated on the basis of the energetics of the individual components and the Li solvate. The calculated dissociation energies are found to be similar for Li + -[FTFSI], Li + -[TFSI], and Li + -[FSI] where only Li + -O coordination exists. Increase in asymmetry and anion size by fluorination on one side of the [TFSI] anion does not result in significant differences in the dissociation energies. On the other hand, with [CTFSI], both Li + -O and Li + -N coordination are present, and the Li solvate has smaller dissociation energy than the solvation by [DCA] alone, [TFSI] alone, or a 1:1 mixture of [DCA]/[TFSI] anions. This finding suggests that the Li + solvation can be weakened by asymmetric anions that promote competing coordination environments through enthalpic effects. Among the possible Li solvates of (Li[CTFSI] n ) −( n −1) , where n = 1, 2, 3, or 4, (Li[CTFSI] 2 ) −1 is found to be the most stable with both monodentate and bidentate bonding possibilities. Based on this study, we hypothesize that the partial solvation and weakened solvation energetics by asymmetric anions may increase structural heterogeneity and fluctuations in Li solvates in IL electrolytes. These effects may further promote the Li + hopping transport mechanism in concentrated and multicomponent IL electrolytes that is relevant to Li-ion batteries.
more »
« less
Lithium Solvation and Mobility in Ionic Liquid Electrolytes with Asymmetric Sulfonyl-Cyano Anion
The solvation structure and transport properties of Li+ in ionic liquid (IL) electrolytes based on n-methyl-n-butylpyrrolidinium cyano(trifluoromethanesulfonyl)imide [PYR14][CTFSI] and [Li][CTFSI] (0 ≤ xLi ≤ 0.7) were studied by Raman and Nuclear Magnetic Resonance (NMR) diffusometry, and molecular dynamics (MD) simulations. At xLi < 0.3, Li+ coordination is dominated by the cyano group. As xLi is increased, free cyano-sites become limited, resulting in increased coordination via the sulfonyl group. The 1:1 mixture of the symmetric anions bis(trifluoromethanesulfonyl)imide ([TFSI]) and dicyanamide ([DCA]) results in similar physical properties as the IL with [CTFSI]. However, anion asymmetry is shown to increase Li-salt solubility and promote Li+ transference. The lifetimes of Li+-cyano coordination for [CTFSI] are calculated to be shorter than those for [DCA], indicating that the competition from the sulfonyl group weakens its solvation with Li+. This resulted in higher Li+ transference for the electrolyte with [CTFSI]. In relation to the utility of these electrolytes in energy storage, the Li–LiFePO4 half cells assembled with IL electrolyte (xLi = 0.3, 0.5, and 0.7) demonstrated a nominal capacity of 140 mAh/g at 0.1C rate and 90 °C where the cell with xLi = 0.7 IL electrolyte demonstrated 61% capacity retention after 100 cycles and superior rate capability owing to increased electrochemical stability.
more »
« less
- Award ID(s):
- 1903259
- PAR ID:
- 10345440
- Editor(s):
- Gardas, Ramesh L.
- Date Published:
- Journal Name:
- Journal of Chemical & Engineering Data
- ISSN:
- 0021-9568
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Despite significant interest toward solid‐state electrolytes owing to their superior safety in comparison to liquid‐based electrolytes, sluggish ion diffusion and high interfacial resistance limit their application in durable and high‐power density batteries. Here, a novel quasi‐solid Li+ion conductive nanocomposite polymer electrolyte containing black phosphorous (BP) nanosheets is reported. The developed electrolyte is successfully cycled against Li metal (over 550 h cycling) at 1 mA cm−2at room temperature. The cycling overpotential is dropped by 75% in comparison to BP‐free polymer composite electrolyte indicating lower interfacial resistance at the electrode/electrolyte interfaces. Molecular dynamics simulations reveal that the coordination number of Li+ions around (trifluoromethanesulfonyl)imide (TFSI−) pairs and ethylene‐oxide chains decreases at the Li metal/electrolyte interface, which facilitates the Li+transport through the polymer host. Density functional theory calculations confirm that the adsorption of the LiTFSI molecules at the BP surface leads to the weakening of N and Li atomic bonding and enhances the dissociation of Li+ions. This work offers a new potential mechanism to tune the bulk and interfacial ionic conductivity of solid‐state electrolytes that may lead to a new generation of lithium polymer batteries with high ionic conduction kinetics and stable long‐life cycling.more » « less
-
Composite polymer electrolytes that incorporate ceramic fillers in a polymer matrix offer mechanical strength and flexibility as solid electrolytes for lithium metal batteries. However, fast Li+ transport between polymer and Li+-conductive filler phases is not a simple achievement due to high barriers for Li+ exchange across the interphase. This study demonstrates how modification of Li7La3Zr2O12 (LLZO) nanofiller surfaces with silane chemistries influences Li+ transport at local and global electrolyte scales. Anhydrous reactions covalently link amine-functionalized silanes [(3-aminopropyl)triethoxysilane (APTES)] to LLZO nanoparticles, which protects LLZO in air. APTES functionalization lowers the poly (ethylene oxide) (PEO)-LLZO interphase resistance to half that of unmodified LLZO and increases effective Li+ transference number, while insulating Al2O3 completely blocks ion exchange and lowers transference number and conductivity in PEO-lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-LLZO composites. Modeling an inner resistive interphase between LLZO and PEO surrounded by an outer conductive interphase explains non-linear conductivity trends. Solid-state 7Li & 6Li nuclear magnetic resonance shows Li+ only exchanges between PEO-LiTFSI and some LLZO interphase, with no appreciable Li+ transport through bulk LLZO. Surface functionalization is a promising path toward lowering the polymer-ceramic interphase resistance. This work demonstrates that local changes in Li+ transport affect macroscopic performance, highlighting the intricate relationships between all interfaces in inherently heterogeneous composite polymer electrolytes.more » « less
-
Lithium metal batteries promise higher energy densities than current lithium-ion batteries but require novel electrolytes to extend their cycle life. Fluorinated solvents help stabilize the solid electrolyte interphase (SEI) with lithium metal, but are believed to have weaker solvation ability compared to their nonfluorinated counterparts and are deemed ‘poorer electrolytes’. In this work, we synthesize tris(2-fluoroethyl) borate (TFEB) as a new fluorinated borate ester solvent and show that TFEB unexpectedly has higher lithium salt solubility than its nonfluorinated counterpart (triethyl borate). Through experiments and simulations, we show that the partially fluorinated –CH2F group acts as the primary coordination site that promotes lithium salt dissolution. TFEB electrolyte has a higher lithium transference number and better rate capability compared to methoxy polyethyleneglycol borate esters reported in the literature. In addition, TFEB supports compact lithium deposition morphology, high lithium metal Coulombic efficiency, and stable cycling of lithium metal/LiFePO4 cells. This work ushers in a new electrolyte design paradigm where partially fluorinated moieties enable salt dissolution and can serve as primary ion coordination sites for next-generation electrolytes.more » « less
-
The performance of the rechargeable Li metal battery anode is limited by the poor ionic conductivity and poor mechanical properties of its solid-electrolyte interphase (SEI) layer. To overcome this, a 3 : 1 v/v ethyl methyl carbonate (EMC) : fluoroethylene carbonate (FEC) containing 0.8 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and 0.2 M lithium difluoro(oxalate)borate (LiDFOB) dual-salts with 0.05 M lithium hexafluorophosphate (LiPF 6 ) was tested to promote the formation of a multitude of SEI-beneficial species. The resulting SEI layer was rich in LiF, Li 2 CO 3 , oligomeric and glass borates, Li 3 N, and Li 2 S, which enhanced its role as a protective yet Li + conductive film, stabilizing the lithium metal anode and minimizing dead lithium build-up. With a stable SEI, a Li/Li[Ni 0.59 Co 0.2 Mn 0.2 Al 0.01 ]O 2 Li-metal battery (LMB) retains 75% of its 177 mA h g −1 specific discharge capacity for 500 hours at a coulombic efficiency of greater than 99.3% at the fast charge–discharge rate of 1.8 mA cm −2 .more » « less
An official website of the United States government

