skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1926919

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recently, genomic approaches have helped to resolve phylogenetic questions in many groups of parasitic organisms, including lice (Phthiraptera). However, these approaches have still not been applied to one of the most diverse groups of lice, Amblycera. To fill this gap, we applied phylogenomic methods based on genome‐level exon sequence data to resolve the relationships within and among the families of Amblycera. Our phylogenomic trees support the monophyly of the families Ricinidae and Laemobothriidae. However, the families Trimenoponidae and Gyropidae are not monophyletic, indicating that they should be merged into a single family. The placement ofTrinotonis unstable with respect to Boopiidae and Menoponidae, and we suggest recognizing Trinotonidae as a separate family. At the genus level, the generaColpocephalum,Hohorstiella,MenacanthusandRicinuswere recovered as paraphyletic. Regarding generic complexes, the tree revealed theMenacanthuscomplex to be monophyletic, but theColpocephalumcomplex paraphyletic, including genera not traditionally placed in this group. Dating analysis suggests that the divergence among families of Amblycera occurred shortly after the Cretaceous–Paleogene boundary 66 Mya. Cophylogenetic analyses revealed many host‐switching events during the diversification of Amblycera, indicating that the evolutionary history of Amblycera does not tightly mirror that of its hosts. Ancestral host reconstructions revealed that the ancestral host of Amblycera was most likely a bird, with two host switching events to mammals. By combining phylogenomics, molecular dating and cophylogenetic analyses, we provide the first large‐scale picture of amblyceran evolution, which will serve as a basis for future studies of this group. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Abstract Evolution results from the interaction of stochastic and deterministic processes that create a web of historical contingency, shaping gene content and organismal function. To understand the scope of this interaction, we examine the relative contributions of stochasticity, determinism, and contingency in shaping gene inactivation in 34 lineages of endosymbiotic bacteria,Sodalis, found in parasitic lice,Columbicola, that are independently undergoing genome degeneration. Here we show that the process of genome degeneration in this system is largely deterministic: genes involved in amino acid biosynthesis are lost while those involved in providing B-vitamins to the host are retained. In contrast, many genes encoding redundant functions, including components of the respiratory chain and DNA repair pathways, are subject to stochastic loss, yielding historical contingencies that constrain subsequent losses. Thus, while selection results in functional convergence between symbiont lineages, stochastic mutations initiate distinct evolutionary trajectories, generating diverse gene inventories that lack the functional redundancy typically found in free-living relatives. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract Avian feather lice (Phthiraptera: Ischnocera) have undergone morphological diversification into ecomorphs based on how they escape host preening defences. Parrot lice are one prominent example of this phenomenon, with wing, body, or head louse ecomorphs occurring on various groups of parrots. Currently defined genera of parrot lice typically correspond to this ecomorphological variation. Here we explore the phylogenetic relationships among parrot feather lice by sequencing whole genomes and assembling a target set of 2395 nuclear protein coding genes. Phylogenetic trees based on concatenated and coalescent analyses of these data reveal highly supported trees with strong agreement between methods of analysis. These trees reveal that parrot feather lice fall into two separate clades that form a grade with respect to the Brueelia-complex. All parrot louse genera sampled by more than one species were recovered as monophyletic. The evolutionary relationships among these lice showed evidence of strong biogeographic signal, which may also be related to the relationships among their hosts. 
    more » « less
  4. Abstract Myrsidea Waterston, 1915 (Phthiraptera: Menoponidae) is the most diverse genus of avian chewing lice. Myrsidea has a global distribution, is thought to be highly host-specific, and parasitizes mostly passerine birds. However, the rate of taxonomic studies describing new species is relatively low, and it is thought that much of the diversity of Myrsidea is yet to be discovered. This low rate of taxonomic description for this genus, and many others, may be related to the time-consuming nature of morphological species description and a lack of expertise in louse taxonomy. Furthermore, most of the taxonomic revisions and reviews have focused on specific host families, and no comprehensive review of the morphology and molecular work of Myrsidea has been completed in the last 20 years. Here, we review the taxonomy and systematics of Myrsidea to (i) describe this chewing louse genus and its biological importance; (ii) describe current problems with its taxonomy; (iii) simplify and summarize morphological descriptions; (iv) summarize molecular data; and (v) provide a comprehensive checklist of the Myrsidea species, with all publications and localities of occurrence included. Together, we hope that this information will provide researchers with a single source of information on the genus Myrsidea, making it easier for work to proceed on its taxonomy, systematics, ecology, and evolution. Importantly, our work highlights important gaps in our knowledge of Myrsidea, providing guideposts on where future work on Myrsidea is needed. 
    more » « less
  5. Abstract The effective population size (Ne) of an organism is expected to be generally proportional to the total number of individuals in a population. In parasites, we might expect the effective population size to be proportional to host population size and host body size, because both are expected to increase the number of parasite individuals. However, among other factors, parasite populations are sometimes so extremely subdivided that high levels of inbreeding may distort these predicted relationships. Here, we used whole-genome sequence data from dove parasites (71 feather louse species of the genus Columbicola) and phylogenetic comparative methods to study the relationship between parasite effective population size and host population size and body size. We found that parasite effective population size is largely explained by host body size but not host population size. These results suggest the potential local population size (infrapopulation or deme size) is more predictive of the long-term effective population size of parasites than is the total number of potential parasite infrapopulations (i.e., host individuals). 
    more » « less
  6. Abstract The mitochondrial genomes (mitogenomes) of bilaterian animals are highly conserved structures that usually consist of a single circular chromosome. However, several species of parasitic lice (Insecta: Phthiraptera) possess fragmented mitogenomes, where the mitochondrial genes are present on separate, circular chromosomes. Nevertheless, the extent, causes, and consequences of this structural variation remain poorly understood. Here, we combined new and existing data to better understand the evolution of mitogenome fragmentation in major groups of parasitic lice. We found strong evidence that fragmented mitogenomes evolved many times within parasitic lice and that the level of fragmentation is highly variable, including examples of heteroplasmic arrangements. We also found a significant association between mitochondrial fragmentation and signatures of relaxed selection. Mitochondrial fragmentation was also associated with changes to a lower AT%, possibly due to differences in mutation biases. Together, our results provide a significant advance in understanding the process of mitogenome fragmentation and provide an important perspective on mitochondrial evolution in eukaryotes. 
    more » « less
  7. Many parasitic insects, including lice, form close relationships with endosymbiotic bacteria that are crucial for their survival. In this study, we used genomic sequencing to investigate the distribution and evolutionary history of the bacterial genusSodalisacross a broad range of feather louse species spanning 140 genera. Phylogenomic analysis revealed significant diversity amongSodalislineages in feather lice and robust evidence for their independent and repeated acquisition by different louse clades throughout their radiation. Among the 1020 louse genomes analysed, at least 22% containedSodalis, distributed across 57 louse genera. Cophylogenetic analyses between theSodalisand feather louse phylogenies indicated considerable mismatch. This phylogenetic incongruence between lice andSodalis, along with the presence of distantly relatedSodalislineages in otherwise closely related louse species, strongly indicates repeated independent acquisition of this endosymbiont. Additionally, evidence of cospeciation among a few closely related louse species, coupled with frequent acquisition of these endosymbionts from free-living bacteria, further highlights the diverse evolutionary processes shapingSodalisendosymbiosis in feather lice. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  8. Free, publicly-accessible full text available June 15, 2026
  9. Nucleotide base composition plays an influential role in the molecular mechanisms involved in gene function, phenotype, and amino acid composition. GC content (proportion of guanine and cytosine in DNA sequences) shows a high level of variation within and among species. Many studies measure GC content in a small number of genes, which may not be representative of genome-wide GC variation. One challenge when assembling extensive genomic data sets for these studies is the significant amount of resources (monetary and computational) associated with data processing, and many bioinformatic tools have not been optimized for resource efficiency. Using a high-performance computing (HPC) cluster, we manipulated resources provided to the targeted gene assembly program, automated target restricted assembly method (aTRAM), to determine an optimum way to run the program to maximize resource use. Using our optimum assembly approach, we assembled and measured GC content of all of the protein-coding genes of a diverse group of parasitic feather lice. Of the 499 426 genes assembled across 57 species, feather lice were GC-poor (mean GC = 42.96%) with a significant amount of variation within and between species (GC range = 19.57%-73.33%). We found a significant correlation between GC content and standard deviation per taxon for overall GC and GC3, which could indicate selection for G and C nucleotides in some species. Phylogenetic signal of GC content was detected in both GC and GC3. This research provides a large-scale investigation of GC content in parasitic lice laying the foundation for understanding the basis of variation in base composition across species. 
    more » « less
  10. Sloan, Daniel (Ed.)
    While mitochondrial genome content and organization is quite diverse across all Eukaryotes, most bilaterian animal mitochondrial genomes (mitogenomes) exhibit highly conserved gene content and organisation, with genes typically encoded on a single circular chromosome. However, many species of parasitic lice (Insecta: Phthiraptera) are among the notable exceptions, having mitogenomes fragmented into multiple circular chromosomes. To better understand the process of mitogenome fragmentation, we conducted a large-scale genomic study of a major group of lice, Amblycera, with extensive taxon sampling. Analyses of the evolution of mitogenome structure across a phylogenomic tree of 90 samples from 53 genera revealed evidence for multiple independent origins of mitogenome fragmentation, some inferred to have occurred less than five million years ago. We leveraged these many independent origins of fragmentation to compare the rates of DNA substitution and gene rearrangement, specifically contrasting branches with fragmented and non-fragmented mitogenomes. We found that lineages with fragmented mitochondrial genomes had significantly higher rates of mitochondrial sequence evolution. In addition, lineages with fragmented mitochondrial genomes were more likely to have mitogenome gene rearrangements than those with single-chromosome mitochondrial genomes. By combining phylogenomics and mitochondrial genomics we provide a detailed portrait of mitogenome evolution across this group of insects with a remarkably unstable mitogenome structure, identifying processes of molecular evolution that are correlated with mitogenome fragmentation. 
    more » « less