skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constrained optimization problems governed by PDE models of grain boundary motions
Abstract In this article, we consider a class of optimal control problems governed by state equations of Kobayashi-Warren-Carter-type. The control is given by physical temperature. The focus is on problems in dimensions less than or equal to 4. The results are divided into four Main Theorems, concerned with: solvability and parameter dependence of state equations and optimal control problems; the first-order necessary optimality conditions for these regularized optimal control problems. Subsequently, we derive the limiting systems and optimality conditions and study their well-posedness.  more » « less
Award ID(s):
2110263 1913004
PAR ID:
10345643
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Advances in Nonlinear Analysis
Volume:
11
Issue:
1
ISSN:
2191-9496
Page Range / eLocation ID:
1249 to 1286
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we consider the optimal control of semilinear fractional PDEs with both spectral and integral fractional diffusion operators of order 2 s with s ∈ (0, 1). We first prove the boundedness of solutions to both semilinear fractional PDEs under minimal regularity assumptions on domain and data. We next introduce an optimal growth condition on the nonlinearity to show the Lipschitz continuity of the solution map for the semilinear elliptic equations with respect to the data. We further apply our ideas to show existence of solutions to optimal control problems with semilinear fractional equations as constraints. Under the standard assumptions on the nonlinearity (twice continuously differentiable) we derive the first and second order optimality conditions. 
    more » « less
  2. This paper addresses novel applications to practical modelling of the newly developed theory of necessary optimality conditions in controlled sweeping/Moreau processes with free time and pointwise control and state constraints. Problems of this type appear, in particular, in dynamical models dealing with unmanned surface vehicles (USVs) and nanoparticles. We formulate optimal control problems for a general class of such dynamical systems and show that the developed necessary optimality conditions for constrained free-time controlled sweeping processes lead us to designing efficient procedures to solve practical models of this class. Moreover, the paper contains numerical calculations of optimal solutions to marine USVs and nanoparticle models in specific situations. Overall, this study contributes to the advancement of optimal control theory for constrained sweeping processes and its practical applications in the fields of marine USVs and nanoparticle modelling. 
    more » « less
  3. In this paper, we study the maximum principle of mean field type control problems when the volatility function depends on the state and its measure and also the control, by using our recently developed method in [Bensoussan, A., Huang, Z. and Yam, S. C. P. [2023] Control theory on Wasserstein space: A new approach to optimality conditions, Ann. Math. Sci. Appl.; Bensoussan, A., Tai, H. M. and Yam, S. C. P. [2023] Mean field type control problems, some Hilbert-space-valued FBSDEs, and related equations, preprint (2023), arXiv:2305.04019; Bensoussan, A. and Yam, S. C. P. [2019] Control problem on space of random variables and master equation, ESAIM Control Optim. Calc. Var. 25, 10]. Our method is to embed the mean field type control problem into a Hilbert space to bypass the evolution in the Wasserstein space. We here give a necessary condition and a sufficient condition for these control problems in Hilbert spaces, and we also derive a system of forward–backward stochastic differential equations. 
    more » « less
  4. In this paper, we study the maximum principle of mean field type control problems when the volatility function depends on the state and its measure and also the control, by using our recently developed method in [Bensoussan, A., Huang, Z. and Yam, S. C. P. [2023] Control theory on Wasserstein space: A new approach to optimality conditions, Ann. Math. Sci. Appl.; Bensoussan, A., Tai, H. M. and Yam, S. C. P. [2023] Mean field type control problems, some Hilbert-space-valued FBSDEs, and related equations, preprint (2023), arXiv:2305.04019; Bensoussan, A. and Yam, S. C. P. [2019] Control problem on space of random variables and master equation, ESAIM Control Optim. Calc. Var. 25, 10]. Our method is to embed the mean field type control problem into a Hilbert space to bypass the evolution in the Wasserstein space. We here give a necessary condition and a sufficient condition for these control problems in Hilbert spaces, and we also derive a system of forward–backward stochastic differential equations. 
    more » « less
  5. A linear-quadratic optimal control problem for a forward stochastic Volterra integral equation (FSVIE) is considered. Under the usual convexity conditions, open-loop optimal control exists, which can be characterized by the optimality system, a coupled system of an FSVIE and a type-II backward SVIE (BSVIE). To obtain a causal state feedback representation for the open-loop optimal control, a path-dependent Riccati equation for an operator-valued function is introduced, via which the optimality system can be decoupled. In the process of decoupling, a type-III BSVIE is introduced whose adapted solution can be used to represent the adapted M-solution of the corresponding type-II BSVIE. Under certain conditions, it is proved that the path-dependent Riccati equation admits a unique solution, which means that the decoupling field for the optimality system is found. Therefore, a causal state feedback representation of the open-loop optimal control is constructed. An additional interesting finding is that when the control only appears in the diffusion term, not in the drift term of the state system, the causal state feedback reduces to a Markovian state feedback. 
    more » « less