skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simultaneous Change Point Inference and Structure Recovery for High Dimensional Gaussian Graphical Models
In this article, we investigate the problem of simultaneous change point inference and structure recovery in the context of high dimensional Gaussian graphical models with possible abrupt changes. In particular, motivated by neighborhood selection, we incorporate a threshold variable and an unknown threshold parameter into a joint sparse regression model which combines p l1-regularized node-wise regression problems together. The change point estimator and the corresponding estimated coefficients of precision matrices are obtained together. Based on that, a classifier is introduced to distinguish whether a change point exists. To recover the graphical structure correctly, a data-driven thresholding procedure is proposed. In theory, under some sparsity conditions and regularity assumptions, our method can correctly choose a homogeneous or heterogeneous model with high accuracy. Furthermore, in the latter case with a change point, we establish estimation consistency of the change point estimator, by allowing the number of nodes being much larger than the sample size. Moreover, it is shown that, in terms of structure recovery of Gaussian graphical models, the proposed thresholding procedure achieves model selection consistency and controls the number of false positives. The validity of our proposed method is justified via extensive numerical studies. Finally, we apply our proposed method to the S&P 500 dataset to show its empirical usefulness.  more » « less
Award ID(s):
2100729
PAR ID:
10345673
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of machine learning research
Volume:
22
ISSN:
1532-4435
Page Range / eLocation ID:
1-62
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Panel count data arise when the number of recurrent events experienced by each subject is observed intermittently at discrete examination times. The examination time process can be informative about the underlying recurrent event process even after conditioning on covariates. We consider a semiparametric accelerated mean model for the recurrent event process and allow the two processes to be correlated through a shared frailty. The regression parameters have a simple marginal interpretation of modifying the time scale of the cumulative mean function of the event process. A novel estimation procedure for the regression parameters and the baseline rate function is proposed based on a conditioning technique. In contrast to existing methods, the proposed method is robust in the sense that it requires neither the strong Poisson-type assumption for the underlying recurrent event process nor a parametric assumption on the distribution of the unobserved frailty. Moreover, the distribution of the examination time process is left unspecified, allowing for arbitrary dependence between the two processes. Asymptotic consistency of the estimator is established, and the variance of the estimator is estimated by a model-based smoothed bootstrap procedure. Numerical studies demonstrated that the proposed point estimator and variance estimator perform well with practical sample sizes. The methods are applied to data from a skin cancer chemoprevention trial. 
    more » « less
  2. Despite numerous years of research into the merits and trade-offs of various model selection criteria, obtaining robust results that elucidate the behavior of cross-validation remains a challenging endeavor. In this paper, we highlight the inherent limitations of cross-validation when employed to discern the structure of a Gaussian graphical model. We provide finite-sample bounds on the probability that the Lasso estimator for the neighborhood of a node within a Gaussian graphical model, optimized using a prediction oracle, misidentifies the neighborhood. Our results pertain to both undirected and directed acyclic graphs, encompassing general, sparse covariance structures. To support our theoretical findings, we conduct an empirical investigation of this inconsistency by contrasting our outcomes with other commonly used information criteria through an extensive simulation study. Given that many algorithms designed to learn the structure of graphical models require hyperparameter selection, the precise calibration of this hyperparameter is paramount for accurately estimating the inherent structure. Consequently, our observations shed light on this widely recognized practical challenge. 
    more » « less
  3. Summary Structural learning of Gaussian graphical models in the presence of latent variables has long been a challenging problem. Chandrasekaran et al. (2012) proposed a convex program for estimating a sparse graph plus a low-rank term that adjusts for latent variables; however, this approach poses challenges from both computational and statistical perspectives. We propose an alternative, simple solution: apply a hard-thresholding operator to existing graph selection methods. Conceptually simple and computationally attractive, the approach of thresholding the graphical lasso is shown to be graph selection consistent in the presence of latent variables under a simpler minimum edge strength condition and at an improved statistical rate. The results are extended to estimators for thresholded neighbourhood selection and constrained $$\ell_{1}$$-minimization for inverse matrix estimation as well. We show that our simple thresholded graph estimators yield stronger empirical results than existing methods for the latent variable graphical model problem, and we apply them to a neuroscience case study on estimating functional neural connections. 
    more » « less
  4. Network estimation has been a critical component of high-dimensional data analysis and can provide an understanding of the underlying complex dependence structures. Among the existing studies, Gaussian graphical models have been highly popular. However, they still have limitations due to the homogeneous distribution assumption and the fact that they are only applicable to small-scale data. For example, cancers have various levels of unknown heterogeneity, and biological networks, which include thousands of molecular components, often differ across subgroups while also sharing some commonalities. In this article, we propose a new joint estimation approach for multiple networks with unknown sample heterogeneity, by decomposing the Gaussian graphical model (GGM) into a collection of sparse regression problems. A reparameterization technique and a composite minimax concave penalty are introduced to effectively accommodate the specific and common information across the networks of multiple subgroups, making the proposed estimator significantly advancing from the existing heterogeneity network analysis based on the regularized likelihood of GGM directly and enjoying scale-invariant, tuning-insensitive, and optimization convexity properties. The proposed analysis can be effectively realized using parallel computing. The estimation and selection consistency properties are rigorously established. The proposed approach allows the theoretical studies to focus on independent network estimation only and has the significant advantage of being both theoretically and computationally applicable to large-scale data. Extensive numerical experiments with simulated data and the TCGA breast cancer data demonstrate the prominent performance of the proposed approach in both subgroup and network identifications. 
    more » « less
  5. In this paper, we propose a novel Bayesian group regularization method based on the spike and slab Lasso priors for jointly estimating multiple graphical models. The proposed method can be used to estimate common sparsity structure underlying the graphical models while capturing potential heterogeneity of the precision matrices corresponding to those models. Our theoretical results show that the proposed method enjoys the optimal rate of convergence in L-infinity norm for estimation consistency and has a strong structure recovery guarantee even when the signal strengths over different graphs are heterogeneous. Through simulation studies and an application to the capital bike-sharing network data, we demonstrate the competitive performance of our method compared to existing alternatives. 
    more » « less