A liquid-metal intelligent reflecting surface (IRS) unit cell is presented, using hybrid electrocapillary actuation to enable reconfigurability. Elongation of the liquid metal by up to 4 mm is experimentally demonstrated, corresponding to a ~ 180° reflection phase shift between two unit-cell states. Simulation of a 7 × 6 IRS array based on these two unit-cell states results in non-specular reflected signals at 4.85 GHz that are indicative of IRS functionality.
more »
« less
Electrocapillary Actuation of Liquid Metal in Microchannels
Controllable deformation of liquid metal by electrocapillary actuation (ECA) is empirically characterized in fluidic channels at the sub-millimeter-length scale. In 100-µm-deep channels of varying widths, the Galinstan liquid metal could move at velocities of more than 40 mm/s. The liquid metal could extend more than 2.5 mm into the channels at an electrocapillary actuation voltage of 3 V DC. The dynamic behavior of the liquid metal as it moves in the microchannels is described. These results are useful for designing microsystems that use liquid metal as a functional material.
more »
« less
- Award ID(s):
- 1807896
- PAR ID:
- 10345682
- Date Published:
- Journal Name:
- Micromachines
- Volume:
- 13
- Issue:
- 4
- ISSN:
- 2072-666X
- Page Range / eLocation ID:
- 572
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Soft materials and compliant actuation concepts have generated new design and control approaches in areas from robotics to wearable devices. Despite the potential of soft robotic systems, most designs currently use hard pumps, valves, and electromagnetic actuators. In this work, we take a step towards fully soft robots by developing a new compliant electromagnetic actuator architecture using gallium-indium liquid metal conductors, as well as compliant permanent magnetic and compliant iron composites. Properties of the new materials are first characterized and then co-fabricated to create an exemplary biologically-inspired soft actuator with pulsing or grasping motions, similar to Xenia soft corals. As current is applied to the liquid metal coil, the compliant permanent magnetic tips on passive silicone arms are attracted or repelled. The dynamics of the robotic actuator are characterized using stochastic system identification techniques and then operated at the resonant frequency of 7 Hz to generate high-stroke (>6 mm) motions.more » « less
-
Bistable electroactive polymers (BSEP) combine shape memory with large-strain actuation at the rubbery state to achieve rigid-to-rigid actuation. The stiffness of the BSEP is tunable via glass transition or phase changing. The reversible melting-crystallization of the polymer chains in the phase changing BSEP contributes to the stiffness change within a narrow temperature range. A modulus change of more than 1000 folds can be achieved within 3 °C. Additionally, large actuation strains rivaling those of VHB acrylic elastomers can be obtained at the rubbery state. Explorations regarding potential applications of this material have been focused on tactile displays. In one design, Joule heating of a serpentine-shaped compliant electrode coated on a BSEP film, coupled with a pneumatic pressure source has been employed to raise diaphragm dots with 1.5 mm base diameter to heights up to 0.7 mm. The resulting Braille electronic readers could thus be actuated with low voltages.more » « less
-
null (Ed.)This presentation reports different methods of making gallium-based liquid metal (LM) microfluidics passive frequency selective surfaces (FSS). In the first method Si wafer was dry-etched to form a mold and PDMS was replicated from the Si mold to create microfluidic channels with 5x5 array of 300μm width and 200 μm height for Jerusalem cross bars structure, surrounded by four fixed 2 x 1 x 0.2 mm structures. A PDMS lid having 1 mm diameter holes obtained from SLA 3D printed pillar array was aligned and bonded to the replicated PDMS to create sealed microfluidic channels. The bonded structure was placed with lid upwards in an open top 3D printed container measuring 64mm x 64mmarea and 25 mm height. LM was flooded into the container and loaded in Temescal e-beam evaporator at atmospheric pressure. Pressure in evaporator was dropped to 5.75 x 10-6Torr. After a vacuum period of 2 hours LM filling takes place in microfluidic structures because of positive pressure differential introduced by atmospheric pressure. In second method 70 μmthick SU8-2075 stencil consisting of a patterned 1x1 array of see-through FSS structure of above-mentioned dimensions was released from oxidized Si wafer using7:1 BOE. The SU8-2075 stencil was placed over a partially cured PDMS. After complete PDMS curing, an airbrush filled with LM operating at 36 psi with spraying time of less than 5 seconds, placed 4-5 cm over the stencil yields the patterned 1x1 FSS structure after removal of SU8-2075.more » « less
-
Microfluidically reconfigurable radio-frequency (RF) devices in general have been found attractive for low-loss, wide-frequency tunability and high-power-handling capabilities. Recently, integrated actuation of the microfluidically reconfigurable devices has been proposed for compact mm-wave device applications. This article for the first time introduces microfluidically reconfigurable frequency- and/or bandwidthtunable bandpass filters (BPFs) operated at the mm-wave band with integrated actuation. The BPFs consist of coupled hairpin resonators. Frequency tuning is achieved by capacitively loading the resonators. Bandwidth tuning is achieved by creating varying capacitive loading among the resonators to control the interresonator couplings. The capacitive loading mechanisms are realized using the selectively metallized plates (SMPs) that can be repositioned within the microfluidic channels. The microfluidic channels are located directly above the stationary metallizations of the filter. Piezoelectric bending actuators placed under the filter’s ground plane provide the SMP motion capability. The BPFs perform with the worst-case insertion loss of 3.1 dB. Frequency-tuning capable filters operate within 28–38-GHz band. Fractional bandwidth tunability varies from 7.8% to 16.7% at 38 GHz and 7.6% to 12.5% at 28 GHz for the filter that is capable of both tuning mechanisms. The filters are characterized to handle 5 W of the continuous RF power without needing thick ground planes or heat sinks. In addition, the frequency-tuning speed is characterized to be 285 MHz/ms.more » « less
An official website of the United States government

