skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The evolutionary history of small RNAs in Solanaceae
Abstract The Solanaceae or “nightshade” family is an economically important group with remarkable diversity. To gain a better understanding of how the unique biology of the Solanaceae relates to the family’s small RNA (sRNA) genomic landscape, we downloaded over 255 publicly available sRNA data sets that comprise over 2.6 billion reads of sequence data. We applied a suite of computational tools to predict and annotate two major sRNA classes: (1) microRNAs (miRNAs), typically 20- to 22-nucleotide (nt) RNAs generated from a hairpin precursor and functioning in gene silencing and (2) short interfering RNAs (siRNAs), including 24-nt heterochromatic siRNAs typically functioning to repress repetitive regions of the genome via RNA-directed DNA methylation, as well as secondary phased siRNAs and trans-acting siRNAs generated via miRNA-directed cleavage of a polymerase II-derived RNA precursor. Our analyses described thousands of sRNA loci, including poorly understood clusters of 22-nt siRNAs that accumulate during viral infection. The birth, death, expansion, and contraction of these sRNA loci are dynamic evolutionary processes that characterize the Solanaceae family. These analyses indicate that individuals within the same genus share similar sRNA landscapes, whereas comparisons between distinct genera within the Solanaceae reveal relatively few commonalities.  more » « less
Award ID(s):
1842698 1942437 1754097
PAR ID:
10345716
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Plant Physiology
ISSN:
0032-0889
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract In monocots other than maize (Zea mays) and rice (Oryza sativa), the repertoire and diversity of microRNAs (miRNAs) and the populations of phased, secondary, small interfering RNAs (phasiRNAs) are poorly characterized. To remedy this, we sequenced small RNAs (sRNA) from vegetative and dissected inflorescence tissue in 28 phylogenetically diverse monocots and from several early-diverging angiosperm lineages, as well as publicly available data from 10 additional monocot species. We annotated miRNAs, small interfering RNAs (siRNAs) and phasiRNAs across the monocot phylogeny, identifying miRNAs apparently lost or gained in the grasses relative to other monocot families, as well as a number of transfer RNA fragments misannotated as miRNAs. Using our miRNA database cleaned of these misannotations, we identified conservation at the 8th, 9th, 19th, and 3′-end positions that we hypothesize are signatures of selection for processing, targeting, or Argonaute sorting. We show that 21-nucleotide (nt) reproductive phasiRNAs are far more numerous in grass genomes than other monocots. Based on sequenced monocot genomes and transcriptomes, DICER-LIKE5, important to 24-nt phasiRNA biogenesis, likely originated via gene duplication before the diversification of the grasses. This curated database of phylogenetically diverse monocot miRNAs, siRNAs, and phasiRNAs represents a large collection of data that should facilitate continued exploration of sRNA diversification in flowering plants. 
    more » « less
  2. Abstract Several protein families participate in the biogenesis and function of small RNAs (sRNAs) in plants. Those with primary roles include Dicer-like (DCL), RNA-dependent RNA polymerase (RDR), and Argonaute (AGO) proteins. Protein families such as double-stranded RNA-binding (DRB), SERRATE (SE), and SUPPRESSION OF SILENCING 3 (SGS3) act as partners of DCL or RDR proteins. Here, we present curated annotations and phylogenetic analyses of seven sRNA pathway protein families performed on 196 species in the Viridiplantae (aka green plants) lineage. Our results suggest that the RDR3 proteins emerged earlier than RDR1/2/6. RDR6 is found in filamentous green algae and all land plants, suggesting that the evolution of RDR6 proteins coincides with the evolution of phased small interfering RNAs (siRNAs). We traced the origin of the 24-nt reproductive phased siRNA-associated DCL5 protein back to the American sweet flag (Acorus americanus), the earliest diverged, extant monocot species. Our analyses of AGOs identified multiple duplication events of AGO genes that were lost, retained, or further duplicated in subgroups, indicating that the evolution of AGOs is complex in monocots. The results also refine the evolution of several clades of AGO proteins, such as AGO4, AGO6, AGO17, and AGO18. Analyses of nuclear localization signal sequences and catalytic triads of AGO proteins shed light on the regulatory roles of diverse AGOs. Collectively, this work generates a curated and evolutionarily coherent annotation for gene families involved in plant sRNA biogenesis/function and provides insights into the evolution of major sRNA pathways. 
    more » « less
  3. Summary In maize, 24‐nt phased, secondary small interfering RNAs (phasiRNAs) are abundant in meiotic stage anthers, but their distribution and functions are not precisely known.Using laser capture microdissection, we analyzed tapetal cells, meiocytes and other somatic cells at several stages of anther development to establish the timing of 24‐PHASprecursor transcripts and the 24‐nt phasiRNA products.By integrating RNA and small RNA profiling plus single‐molecule and small RNA FISH (smFISH or sRNA‐FISH) spatial detection, we demonstrate that the tapetum is the primary site of 24‐PHASprecursor andDcl5transcripts and the resulting 24‐nt phasiRNAs. Interestingly, 24‐nt phasiRNAs accumulate in all cell types, with the highest levels in meiocytes, followed by tapetum.Our data support the conclusion that 24‐nt phasiRNAs are mobile from tapetum to meiocytes and to other somatic cells. We discuss possible roles for 24‐nt phasiRNAs in anther cell types. 
    more » « less
  4. Small RNAs (sRNAs), ~20–25 nucleotide (nt) in size, regulate various biological processes in plants through directing sequence-specific gene silencing. sRNAs are derived from either single- or double-stranded precursor RNAs. Proper levels of sRNAs are crucial for plant growth, development, genomic stability, and adaptation to abiotic and biotic stresses. Studies have identified the machineries controlling sRNA levels through biogenesis and degradation. This chapter covers recent progresses related to mechanisms governing small RNA biogenesis and degradation. 
    more » « less
  5. Ziemann, Mark (Ed.)
    MicroRNAs (miRNAs) are small non-protein-coding RNAs that regulate gene expression in many eukaryotes. Next-generation sequencing of small RNAs (small RNA-seq) is central to the discovery and annotation of miRNAs. Newly annotated miRNAs and their longer precursors encoded byMIRNAloci are typically submitted to databases such as the miRBase microRNA registry following the publication of a peer-reviewed study. However, genome-wide scans using small RNA-seq data often yield high rates of false-positiveMIRNAannotations, highlighting the need for more robust validation methods. miRScore was developed as an independent and efficient tool for evaluating newMIRNAannotations using sRNA-seq data. miRScore combines structural and expression-based analyses to provide rapid and reliable validation of newMIRNAannotations. By providing users with detailed metrics and visualization, miRScore enhances the ability to assess confidence inMIRNAannotations. miRScore has the potential to advance the overall quality ofMIRNAannotations by improving accuracy of new submissions to miRNA databases and serving as a resource for re-evaluating existing annotations. 
    more » « less