skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Projecting Robot Navigation Paths: Hardware and Software for Projected AR
For mobile robots, mobile manipulators, and autonomous vehicles to safely navigate around populous places such as streets and warehouses, human observers must be able to understand their navigation intent. One way to enable such understanding is by visualizing this intent through projections onto the surrounding environment. But despite the demonstrated effectiveness of such projections, no open codebase with an integrated hardware setup exists. In this work, we detail the empirical evidence for the effectiveness of such directional projections, and share a robot-agnostic implementation of such projections, coded in C++ using the widely-used Robot Operating System (ROS) and rviz. Additionally, we demonstrate a hardware configuration for deploying this software, using a Fetch robot, and briefly summarize a full-scale user study that motivates this configuration. The code, configuration files (roslaunch and rviz files), and documentation are freely available on GitHub at https://github.com/umhan35/arrow_projection.  more » « less
Award ID(s):
1763469
PAR ID:
10345735
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACMIEEE International Conference on HumanRobot Interaction
ISSN:
2167-2148
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Human intention prediction plays a critical role in human–robot collaboration, as it helps robots improve efficiency and safety by accurately anticipating human intentions and proactively assisting with tasks. While current applications often focus on predicting intent once human action is completed, recognizing human intent in advance has received less attention. This study aims to equip robots with the capability to forecast human intent before completing an action, i.e., early intent prediction. To achieve this objective, we first extract features from human motion trajectories by analyzing changes in human joint distances. These features are then utilized in a Hidden Markov Model (HMM) to determine the state transition times from uncertain intent to certain intent. Second, we propose two models including a Transformer and a Bi-LSTM for classifying motion intentions. Then, we design a human–robot collaboration experiment in which the operator reaches multiple targets while the robot moves continuously following a predetermined path. The data collected through the experiment were divided into two groups: full-length data and partial data before state transitions detected by the HMM. Finally, the effectiveness of the suggested framework for predicting intentions is assessed using two different datasets, particularly in a scenario when motion trajectories are similar but underlying intentions vary. The results indicate that using partial data prior to the motion completion yields better accuracy compared to using full-length data. Specifically, the transformer model exhibits a 2% improvement in accuracy, while the Bi-LSTM model demonstrates a 6% increase in accuracy. 
    more » « less
  2. null (Ed.)
    This paper introduces a new ROSbag-based multimodal affective dataset for emotional and cognitive states generated using the Robot Operating System (ROS). We utilized images and sounds from the International Affective Pictures System (IAPS) and the International Affective Digitized Sounds (IADS) to stimulate targeted emotions (happiness, sadness, anger, fear, surprise, disgust, and neutral), and a dual N-back game to stimulate different levels of cognitive workload. 30 human subjects participated in the user study; their physiological data were collected using the latest commercial wearable sensors, behavioral data were collected using hardware devices such as cameras, and subjective assessments were carried out through questionnaires. All data were stored in single ROSbag files rather than in conventional Comma-Separated Values (CSV) files. This not only ensures synchronization of signals and videos in a data set, but also allows researchers to easily analyze and verify their algorithms by connecting directly to this dataset through ROS. The generated affective dataset consists of 1,602 ROSbag files, and the size of the dataset is about 787GB. The dataset is made publicly available. We expect that our dataset can be a great resource for many researchers in the fields of affective computing, Human-Computer Interaction (HCI), and Human-Robot Interaction (HRI). 
    more » « less
  3. Early research on physical human–robot interaction (pHRI) has necessarily focused on device design—the creation of compliant and sensorized hardware, such as exoskeletons, prostheses, and robot arms, that enables people to safely come in contact with robotic systems and to communicate about their collaborative intent. As hardware capabilities have become sufficient for many applications, and as computing has become more powerful, algorithms that support fluent and expressive use of pHRI systems have begun to play a prominent role in determining the systems’ usefulness. In this review, we describe a selection of representative algorithmic approaches that regulate and interpret pHRI, describing the progression from algorithms based on physical analogies, such as admittance control, to computational methods based on higher-level reasoning, which take advantage of multimodal communication channels. Existing algorithmic approaches largely enable task-specific pHRI, but they do not generalize to versatile human–robot collaboration. Throughout the review and in our discussion of next steps, we therefore argue that emergent embodied dialogue—bidirectional, multimodal communication that can be learned through continuous interaction—is one of the next frontiers of pHRI. 
    more » « less
  4. Human–robot collaboration is becoming increasingly common in factories around the world; accordingly, we need to improve the interaction experiences between humans and robots working in these spaces. In this article, we report on a user study that investigated methods for providing information to a person about a robot’s intent to move when working together in a shared workspace through signals provided by the robot. In this case, the workspace was the surface of a tabletop. Our study tested the effectiveness of three motion-based and three light-based intent signals as well as the overall level of comfort participants felt while working with the robot to sort colored blocks on the tabletop. Although not significant, our findings suggest that the light signal located closest to the workspace—an LED bracelet located closest to the robot’s end effector—was the most noticeable and least confusing to participants. These findings can be leveraged to support human–robot collaborations in shared spaces. 
    more » « less
  5. As technology advances, the need for safe, efficient, and collaborative human-robot-teams has become increasingly important. One of the most fundamental collaborative tasks in any setting is the object handover. Human-to-robot handovers can take either of two approaches: (1) direct hand-to-hand or (2) indirect hand-to-placement-to-pick-up. The latter approach ensures minimal contact between the human and robot but can also result in increased idle time due to having to wait for the object to first be placed down on a surface. To minimize such idle time, the robot must preemptively predict the human intent of where the object will be placed. Furthermore, for the robot to preemptively act in any sort of productive manner, predictions and motion planning must occur in real-time. We introduce a novel prediction-planning pipeline that allows the robot to preemptively move towards the human agent's intended placement location using gaze and gestures as model inputs. In this paper, we investigate the performance and drawbacks of our early intent predictor-planner as well as the practical benefits of using such a pipeline through a human-robot case study. 
    more » « less