skip to main content


Title: ROSbag-based Multimodal Affective Dataset for Emotional and Cognitive States
This paper introduces a new ROSbag-based multimodal affective dataset for emotional and cognitive states generated using the Robot Operating System (ROS). We utilized images and sounds from the International Affective Pictures System (IAPS) and the International Affective Digitized Sounds (IADS) to stimulate targeted emotions (happiness, sadness, anger, fear, surprise, disgust, and neutral), and a dual N-back game to stimulate different levels of cognitive workload. 30 human subjects participated in the user study; their physiological data were collected using the latest commercial wearable sensors, behavioral data were collected using hardware devices such as cameras, and subjective assessments were carried out through questionnaires. All data were stored in single ROSbag files rather than in conventional Comma-Separated Values (CSV) files. This not only ensures synchronization of signals and videos in a data set, but also allows researchers to easily analyze and verify their algorithms by connecting directly to this dataset through ROS. The generated affective dataset consists of 1,602 ROSbag files, and the size of the dataset is about 787GB. The dataset is made publicly available. We expect that our dataset can be a great resource for many researchers in the fields of affective computing, Human-Computer Interaction (HCI), and Human-Robot Interaction (HRI).  more » « less
Award ID(s):
1846221
NSF-PAR ID:
10212011
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
Page Range / eLocation ID:
226 to 233
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The PoseASL dataset consists of color and depth videos collected from ASL signers at the Linguistic and Assistive Technologies Laboratory under the direction of Matt Huenerfauth, as part of a collaborative research project with researchers at the Rochester Institute of Technology, Boston University, and the University of Pennsylvania. Access: After becoming an authorized user of Databrary, please contact Matt Huenerfauth if you have difficulty accessing this volume. We have collected a new dataset consisting of color and depth videos of fluent American Sign Language signers performing sequences ASL signs and sentences. Given interest among sign-recognition and other computer-vision researchers in red-green-blue-depth (RBGD) video, we release this dataset for use by the research community. In addition to the video files, we share depth data files from a Kinect v2 sensor, as well as additional motion-tracking files produced through post-processing of this data. Organization of the Dataset: The dataset is organized into sub-folders, with codenames such as "P01" or "P16" etc. These codenames refer to specific human signers who were recorded in this dataset. Please note that there was no participant P11 nor P14; those numbers were accidentally skipped during the process of making appointments to collect video stimuli. Task: During the recording session, the participant was met by a member of our research team who was a native ASL signer. No other individuals were present during the data collection session. After signing the informed consent and video release document, participants responded to a demographic questionnaire. Next, the data-collection session consisted of English word stimuli and cartoon videos. The recording session began with showing participants stimuli consisting of slides that displayed English word and photos of items, and participants were asked to produce the sign for each (PDF included in materials subfolder). Next, participants viewed three videos of short animated cartoons, which they were asked to recount in ASL: - Canary Row, Warner Brothers Merrie Melodies 1950 (the 7-minute video divided into seven parts) - Mr. Koumal Flies Like a Bird, Studio Animovaneho Filmu 1969 - Mr. Koumal Battles his Conscience, Studio Animovaneho Filmu 1971 The word list and cartoons were selected as they are identical to the stimuli used in the collection of the Nicaraguan Sign Language video corpora - see: Senghas, A. (1995). Children’s Contribution to the Birth of Nicaraguan Sign Language. Doctoral dissertation, Department of Brain and Cognitive Sciences, MIT. Demographics: All 14 of our participants were fluent ASL signers. As screening, we asked our participants: Did you use ASL at home growing up, or did you attend a school as a very young child where you used ASL? All the participants responded affirmatively to this question. A total of 14 DHH participants were recruited on the Rochester Institute of Technology campus. Participants included 7 men and 7 women, aged 21 to 35 (median = 23.5). All of our participants reported that they began using ASL when they were 5 years old or younger, with 8 reporting ASL use since birth, and 3 others reporting ASL use since age 18 months. Filetypes: *.avi, *_dep.bin: The PoseASL dataset has been captured by using a Kinect 2.0 RGBD camera. The output of this camera system includes multiple channels which include RGB, depth, skeleton joints (25 joints for every video frame), and HD face (1,347 points). The video resolution produced in 1920 x 1080 pixels for the RGB channel and 512 x 424 pixels for the depth channels respectively. Due to limitations in the acceptable filetypes for sharing on Databrary, it was not permitted to share binary *_dep.bin files directly produced by the Kinect v2 camera system on the Databrary platform. If your research requires the original binary *_dep.bin files, then please contact Matt Huenerfauth. *_face.txt, *_HDface.txt, *_skl.txt: To make it easier for future researchers to make use of this dataset, we have also performed some post-processing of the Kinect data. To extract the skeleton coordinates of the RGB videos, we used the Openpose system, which is capable of detecting body, hand, facial, and foot keypoints of multiple people on single images in real time. The output of Openpose includes estimation of 70 keypoints for the face including eyes, eyebrows, nose, mouth and face contour. The software also estimates 21 keypoints for each of the hands (Simon et al, 2017), including 3 keypoints for each finger, as shown in Figure 2. Additionally, there are 25 keypoints estimated for the body pose (and feet) (Cao et al, 2017; Wei et al, 2016). Reporting Bugs or Errors: Please contact Matt Huenerfauth to report any bugs or errors that you identify in the corpus. We appreciate your help in improving the quality of the corpus over time by identifying any errors. Acknowledgement: This material is based upon work supported by the National Science Foundation under award 1749376: "Collaborative Research: Multimethod Investigation of Articulatory and Perceptual Constraints on Natural Language Evolution." 
    more » « less
  2. The overall goal of our research is to develop a system of intelligent multimodal affective pedagogical agents that are effective for different types of learners (Adamo et al., 2021). While most of the research on pedagogical agents tends to focus on the cognitive aspects of online learning and instruction, this project explores the less-studied role of affective (or emotional) factors. We aim to design believable animated agents that can convey realistic, natural emotions through speech, facial expressions, and body gestures and that can react to the students’ detected emotional states with emotional intelligence. Within the context of this goal, the specific objective of the work reported in the paper was to examine the extent to which the agents’ facial micro-expressions affect students’ perception of the agents’ emotions and their naturalness. Micro-expressions are very brief facial expressions that occur when a person either deliberately or unconsciously conceals an emotion being felt (Ekman &Friesen, 1969). Our assumption is that if the animated agents display facial micro expressions in addition to macro expressions, they will convey higher expressive richness and naturalness to the viewer, as “the agents can possess two emotional streams, one based on interaction with the viewer and the other based on their own internal state, or situation” (Queiroz et al. 2014, p.2).The work reported in the paper involved two studies with human subjects. The objectives of the first study were to examine whether people can recognize micro-expressions (in isolation) in animated agents, and whether there are differences in recognition based on the agent’s visual style (e.g., stylized versus realistic). The objectives of the second study were to investigate whether people can recognize the animated agents’ micro-expressions when integrated with macro-expressions, the extent to which the presence of micro + macro-expressions affect the perceived expressivity and naturalness of the animated agents, the extent to which exaggerating the micro expressions, e.g. increasing the amplitude of the animated facial displacements affects emotion recognition and perceived agent naturalness and emotional expressivity, and whether there are differences based on the agent’s design characteristics. In the first study, 15 participants watched eight micro-expression animations representing four different emotions (happy, sad, fear, surprised). Four animations featured a stylized agent and four a realistic agent. For each animation, subjects were asked to identify the agent’s emotion conveyed by the micro-expression. In the second study, 234 participants watched three sets of eight animation clips (24 clips in total, 12 clips per agent). Four animations for each agent featured the character performing macro-expressions only, four animations for each agent featured the character performing macro- + micro-expressions without exaggeration, and four animations for each agent featured the agent performing macro + micro-expressions with exaggeration. Participants were asked to recognize the true emotion of the agent and rate the emotional expressivity ad naturalness of the agent in each clip using a 5-point Likert scale. We have collected all the data and completed the statistical analysis. Findings and discussion, implications for research and practice, and suggestions for future work will be reported in the full paper. ReferencesAdamo N., Benes, B., Mayer, R., Lei, X., Meyer, Z., &Lawson, A. (2021). Multimodal Affective Pedagogical Agents for Different Types of Learners. In: Russo D., Ahram T., Karwowski W., Di Bucchianico G., Taiar R. (eds) Intelligent Human Systems Integration 2021. IHSI 2021. Advances in Intelligent Systems and Computing, 1322. Springer, Cham. https://doi.org/10.1007/978-3-030-68017-6_33Ekman, P., &Friesen, W. V. (1969, February). Nonverbal leakage and clues to deception. Psychiatry, 32(1), 88–106. https://doi.org/10.1080/00332747.1969.11023575 Queiroz, R. B., Musse, S. R., &Badler, N. I. (2014). Investigating Macroexpressions and Microexpressions in Computer Graphics Animated Faces. Presence, 23(2), 191-208. http://dx.doi.org/10.1162/

     
    more » « less
  3. We present the Human And Robot Multimodal Observations of Natural Interactive Collaboration (HARMONIC) dataset. This is a large multimodal dataset of human interactions with a robotic arm in a shared autonomy setting designed to imitate assistive eating. The dataset provides human, robot, and environmental data views of 24 different people engaged in an assistive eating task with a 6-degree-of-freedom (6-DOF) robot arm. From each participant, we recorded video of both eyes, egocentric video from a head-mounted camera, joystick commands, electromyography from the forearm used to operate the joystick, third-person stereo video, and the joint positions of the 6-DOF robot arm. Also included are several features that come as a direct result of these recordings, such as eye gaze projected onto the egocentric video, body pose, hand pose, and facial keypoints. These data streams were collected specifically because they have been shown to be closely related to human mental states and intention. This dataset could be of interest to researchers studying intention prediction, human mental state modeling, and shared autonomy. Data streams are provided in a variety of formats such as video and human-readable CSV and YAML files.

     
    more » « less
  4. In recent years, researchers have developed technology to analyze human facial expressions and other affective data at very high time resolution. This technology is enabling researchers to develop and study interactive robots that are increasingly sensitive to their human interaction partners’ affective states. However, typical interaction planning models and algorithms operate on timescales that are frequently orders of magnitude larger than the timescales at which real-time affect data is sensed. To bridge this gap between the scales of sensor data collection and interaction modeling, affective data must be aggregated and interpreted over longer timescales. In this paper we clarify and formalize the computational task of affect interpretation in the context of an interactive educational game played by a human and a robot, during which facial expression data is sensed, interpreted, and used to predict the interaction partner’s gameplay behavior. We compare different techniques for affect interpretation, used to generate sets of affective labels for an interactive modeling and inference task, and evaluate how the labels generated by each interpretation technique impact model training and inference. We show that incorporating a simple method of personalization into the affect interpretation process — dynamically calculating and applying a personalized threshold for determining affect feature labels over time — leads to a significant improvement in the quality of inference, comparable to performance gains from other data pre-processing steps such as smoothing data via median filter. We discuss the implications of these findings for future development of affect-aware interactive robots and propose guidelines for the use of affect interpretation methods in interactive scenarios. 
    more » « less
  5. Lovable robots in movies regularly beep, chirp, and whirr, yet robots in the real world rarely deploy such sounds. Despite preliminary work supporting the perceptual and objective benefits of intentionally-produced robot sound, relatively little research is ongoing in this area. In this paper, we systematically evaluate transformative robot sound across multiple robot archetypes and behaviors. We conducted a series of five online video-based surveys, each with N ≈ 100 participants, to better understand the effects of musician-designed transformative sounds on perceptions of personal, service, and industrial robots. Participants rated robot videos with transformative sound as significantly happier, warmer, and more competent in all five studies, as more energetic in four studies, and as less discomforting in one study. Overall, results confirmed that transformative sounds consistently improve subjective ratings but may convey affect contrary to the intent of affective robot behaviors. In future work, we will investigate the repeatability of these results through in-person studies and develop methods to automatically generate transformative robot sound. This work may benefit researchers and designers who aim to make robots more favorable to human users. 
    more » « less