skip to main content

This content will become publicly available on May 11, 2023

Title: The optimal beam-loading in two-bunch nonlinear plasma wakefield accelerators
Abstract Due to the highly nonlinear nature of the beam-loading, it is currently not possible to analytically determine the beam parameters needed in a two-bunch plasma wakefield accelerator for maintaining a low energy spread. Therefore in this paper, by using the Broyden–Fletcher–Goldfarb–Shanno algorithm for the parameter scanning with the code QuickPIC and the polynomial regression together with k -fold cross-validation method, we obtain two fitting formulas for calculating the parameters of tri-Gaussian electron beams when minimizing the energy spread based on the beam-loading effect in a nonlinear plasma wakefield accelerator. One formula allows the optimization of the normalized charge per unit length of a trailing beam to achieve the minimal energy spread, i.e. the optimal beam-loading. The other one directly gives the transformer ratio when the trailing beam achieves the optimal beam-loading. A simple scaling law for charges of drive beams and trailing beams is obtained from the fitting formula, which indicates that the optimal beam-loading is always achieved for a given charge ratio of the two beams when the length and separation of two beams and the plasma density are fixed. The formulas can also help obtain the optimal plasma densities for the maximum accelerated charge and the maximum more » acceleration efficiency under the optimal beam-loading respectively. These two fitting formulas will significantly enhance the efficiency for designing and optimizing a two-bunch plasma wakefield acceleration stage. « less
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
2108970 1806046
Publication Date:
NSF-PAR ID:
10345774
Journal Name:
Plasma Physics and Controlled Fusion
Volume:
64
Issue:
6
Page Range or eLocation-ID:
065007
ISSN:
0741-3335
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Using plasma mirror injection we demonstrate, both analytically and numerically, that a circularly polarized helical laser pulse can accelerate highly collimated dense bunches of electrons to several hundred MeV using currently available laser systems. The circular-polarized helical (Laguerre–Gaussian) beam has a unique field structure where the transverse fields have helix-like wave-fronts which tend to zero on-axis where, at focus, there are large on-axis longitudinal magnetic and electric fields. The acceleration of electrons by this type of laser pulse is analyzed as a function of radial mode number and it is shown that the radial mode number has a profound effect on electron acceleration close to the laser axis. Using three-dimensional particle-in-cell simulations a circular-polarized helical laser beam with power of 0.6 PW is shown to produce several dense attosecond bunches. The bunch nearest the peak of the laser envelope has an energy of 0.47 GeV with spread as narrow as 10%, a charge of 26 pC with duration of ∼ 400 as, and a very low divergence of 20 mrad. The confinement by longitudinal magnetic fields in the near-axis region allows the longitudinal electric fields to accelerate the electrons over a long period after the initial reflection. Both themore »longitudinal E and B fields are shown to be essential for electron acceleration in this scheme. This opens up new paths toward attosecond electron beams, or attosecond radiation, at many laser facilities around the world.« less
  2. Abstract Laser wakefield accelerators promise to revolutionize many areas of accelerator science. However, one of the greatest challenges to their widespread adoption is the difficulty in control and optimization of the accelerator outputs due to coupling between input parameters and the dynamic evolution of the accelerating structure. Here, we use machine learning techniques to automate a 100 MeV-scale accelerator, which optimized its outputs by simultaneously varying up to six parameters including the spectral and spatial phase of the laser and the plasma density and length. Most notably, the model built by the algorithm enabled optimization of the laser evolution that might otherwise have been missed in single-variable scans. Subtle tuning of the laser pulse shape caused an 80% increase in electron beam charge, despite the pulse length changing by just 1%.
  3. Abstract

    The concept of electron acceleration by a laser beam in vacuum is attractive due to its seeming simplicity, but its implementation has been elusive, as it requires efficient electron injection into the beam and a mechanism for counteracting transverse expulsion. Electron injection during laser reflection off a plasma mirror is a promising mechanism, but it is sensitive to the plasma density gradient that is hard to control. We get around this sensitivity by utilizing volumetric injection that takes place when a helical laser beam traverses a low-density target. The electron retention is achieved by choosing the helicity, such that the transverse field profiles are hollow while the longitudinal fields are peaked on central axis. We demonstrate using three-dimensional simulations that a 3 PW helical laser can generate a 50 pC low-divergence electron beam with a maximum energy of 1.5 GeV. The unique features of the beam are short acceleration distance (∼100 μm), compact transverse size, high areal density, and electron bunching (∼100 as bunch duration).

  4. Abstract

    An experimental study was undertaken to evaluate the power extraction of an airfoil undergoing large amplitude pitching and heaving using a trailing edge flapping motion for the application of energy harvesting for steady flow over the airfoil. The airfoil was a NACA0015 design, pitching at the 1/3 chord position, with an actively controlled trailing edge flap hinged at the 2/3 chord location (chord length of c = 150mm and aspect ratio AR = 2, however end plates were used to simulate a two-dimensional airfoil). Data were obtained over a range of wind speeds corresponding to Reynolds numbers in the 30,000–60,000 range in a low-speed wind tunnel with turbulence intensities below 2%. The results are characterized using the reduced frequency, k = fc/U∞ over the range of 0.04–0.08, where f is the oscillating frequency in Hz, and U∞ is the freestream velocity. The pitching and heaving amplitudes are θ0 = 70° and h0 = 0.6c respectively, with a phase delay of 90°. Two trailing edge motion profiles are presented, examining the relative phase of trailing edge flap to the pitching phase. For each motion, a positive and negative case are considered. This is a total of 4 trailing edge motionmore »profiles. Trailing edge motion amplitudes of 20° and 40° are compared and results contrasted. Direct transient force measurements were used to obtain the cycle variation of induced aerodynamic loads (lift coefficient) as well as the power output and efficiency. Results are used to identify the influence of trailing edge flap oscillations on the overall performance for energy harvesting, with a maximum efficiency increase of 21.3% and corresponding cycle averaged heaving power coefficient increase of 29.9% observed as a result of trailing edge motion.

    « less
  5. LEGOs are one of the most popular toys and are known to be useful as instructional tools in STEM education. In this work, we used LEGO structures to demonstrate the energetic size effect on structural strength. Many material's fexural strength decreases with increasing structural size. We seek to demonstrate this effect in LEGO beams. Fracture experiments were performed using 3-point bend beams built of 2 X 4 LEGO blocks in a periodic staggered arrangement. LEGO wheels were used as rollers on either ends of the specimens which were weight compensated by adding counterweights. [1] Specimens were loaded by hanging weights at their midspan and the maximum sustained load was recorded. Specimens with a built-in defect (crack) of half specimen height were considered. Beam height was varied from two to 32 LEGO blocks while keeping the in-plane aspect ratio constant. The specimen thickness was kept constant at one LEGO block. Slow-motion videos and sound recordings of fractures were captured to determine how the fracture originated and propagated through the specimen. Flexural stress was calculated based on nominal specimen dimensions and fracture toughness was calculated following ASTM E-399 standard expressions from Srawley (1976). [2] The results demonstrate that the LEGO beams indeedmore »exhibit a size effect on strength. For smaller beams the Uexural strength is higher than for larger beams. The dependence of strength on size is similar to that of Bažant’s size effect law [3] . Initiation of failure occurs consistently at the built-in defect. The staggered arrangement causes persistent crack branching which is more pronounced in larger specimens. The results also show that the apparent fracture toughness increases as the specimen size decreases. Further ongoing investigations consider the effects of the initial crack length on the size effect and the fracture response. The present work demonstrates that LEGO structures can serve as an instructional tool. We demonstrate principles of non-linear elastic fracture mechanics and highlight the importance of material microstructure (architecture) in fracture response. The experimental method is reproducible in a classroom setting without the need for complex facilities. This work was partially supported by the National Science Foundation (NSF) under the award #1662177 and the School of Mechanical Engineering at Purdue University. The authors acknowledge the support of Dr. Thomas Siegmund and Glynn Gallaway. [1] Khalilpour, S., BaniAsad, E. and Dehestani, M., 2019. A review on concrete fracture energy and effective parameters. Cement and Concrete research, 120, pp.294-321. [2] Srawley, J.E., 1976, January. Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens. In Conf. of Am. Soc. for Testing and Mater., Committee E-24 (No. E-8654). [3] Bažant, Z.P., 1999. Size effect on structural strength: a review. Archive of applied Mechanics, 69(9), pp.703-725.« less