skip to main content


Title: The optimal beam-loading in two-bunch nonlinear plasma wakefield accelerators
Abstract Due to the highly nonlinear nature of the beam-loading, it is currently not possible to analytically determine the beam parameters needed in a two-bunch plasma wakefield accelerator for maintaining a low energy spread. Therefore in this paper, by using the Broyden–Fletcher–Goldfarb–Shanno algorithm for the parameter scanning with the code QuickPIC and the polynomial regression together with k -fold cross-validation method, we obtain two fitting formulas for calculating the parameters of tri-Gaussian electron beams when minimizing the energy spread based on the beam-loading effect in a nonlinear plasma wakefield accelerator. One formula allows the optimization of the normalized charge per unit length of a trailing beam to achieve the minimal energy spread, i.e. the optimal beam-loading. The other one directly gives the transformer ratio when the trailing beam achieves the optimal beam-loading. A simple scaling law for charges of drive beams and trailing beams is obtained from the fitting formula, which indicates that the optimal beam-loading is always achieved for a given charge ratio of the two beams when the length and separation of two beams and the plasma density are fixed. The formulas can also help obtain the optimal plasma densities for the maximum accelerated charge and the maximum acceleration efficiency under the optimal beam-loading respectively. These two fitting formulas will significantly enhance the efficiency for designing and optimizing a two-bunch plasma wakefield acceleration stage.  more » « less
Award ID(s):
2108970 1806046
NSF-PAR ID:
10345774
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Plasma Physics and Controlled Fusion
Volume:
64
Issue:
6
ISSN:
0741-3335
Page Range / eLocation ID:
065007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Plasma-based acceleration has emerged as a promising candidate as an accelerator technology for a future linear collider or a next-generation light source. We consider the plasma wakefield accelerator (PWFA) concept where a plasma wave wake is excited by a particle beam and a trailing beam surfs on the wake. For a linear collider, the energy transfer efficiency from the drive beam to the wake and from the wake to the trailing beam must be large, while the emittance and energy spread of the trailing bunch must be preserved. One way to simultaneously achieve this when accelerating electrons is to use longitudinally shaped bunches and nonlinear wakes. In the linear regime, there is an analytical formalism to obtain the optimal shapes. In the nonlinear regime, however, the optimal shape of the driver to maximize the energy transfer efficiency cannot be precisely obtained because currently no theory describes the wake structure and excitation process for all degrees of nonlinearity. In addition, the ion channel radius is not well defined at the front of the wake where the plasma electrons are not fully blown out by the drive beam. We present results using a novel optimization method to effectively determine a current profile for the drive and trailing beam in PWFA that provides low energy spread, low emittance, and high acceleration efficiency. We parameterize the longitudinal beam current profile as a piecewise-linear function and define optimization objectives. For the trailing beam, the algorithm converges quickly to a nearly inverse trapezoidal trailing beam current profile similar to that predicted by the ultrarelativistic limit of the nonlinear wakefield theory. For the drive beam, the beam profile found by the optimization in the nonlinear regime that maximizes the transformer ratio also resembles that predicted by linear theory. The current profiles found from the optimization method provide higher transformer ratios compared with the linear ramp predicted by the relativistic limit of the nonlinear theory. 
    more » « less
  2. Abstract

    The rapid progress that plasma wakefield accelerators are experiencing is now posing the question as to whether they could be included in the design of the next generation of high-energy electron-positron colliders. However, the typical structure of the accelerating wakefields presents challenging complications for positron acceleration. Despite seminal proof-of-principle experiments and theoretical proposals, experimental research in plasma-based acceleration of positrons is currently limited by the scarcity of positron beams suitable to seed a plasma accelerator. Here, we report on the first experimental demonstration of a laser-driven source of ultra-relativistic positrons with sufficient spectral and spatial quality to be injected in a plasma accelerator. Our results indicate, in agreement with numerical simulations, selection and transport of positron beamlets containing$$N_{e+}\ge 10^5$$Ne+105positrons in a 5% bandwidth around 600 MeV, with femtosecond-scale duration and micron-scale normalised emittance. Particle-in-cell simulations show that positron beams of this kind can be guided and accelerated in a laser-driven plasma accelerator, with favourable scalings to further increase overall charge and energy using PW-scale lasers. The results presented here demonstrate the possibility of performing experimental studies of positron acceleration in a laser-driven wakefield accelerator.

     
    more » « less
  3. Abstract

    Radio-frequency quadrupoles (RFQs) are multi-purpose linear particle accelerators that simultaneously bunch and accelerate charged particle beams. They are ubiquitous in accelerator physics, especially as injectors to higher-energy machines, owing to their impressive efficiency. The design and optimization of these devices can be lengthy due to the need to repeatedly perform high-fidelity simulations. Several recent papers have demonstrated that machine learning can be used to build surrogate models (fast-executing replacements of computationally costly beam simulations) for order-of-magnitude computing time speedups. However, while these pilot studies are encouraging, there is room to improve their predictive accuracy. Particularly, beam summary statistics such as emittances (an important figure of merit in particle accelerator physics) have historically been challenging to predict. For the first time, we present a surrogate model trained on 200 000 samples that yields<6% mean average percent error for the predictions of all relevant beam output parameters from defining RFQ design parameters, solving the problem of poor emittance predictions by identifying and including hidden variables which were not accounted for previously. These surrogate models were made possible by using the Julia language and GPU computing; we briefly discuss both. We demonstrate the utility of surrogate modeling by performing a multi-objective optimization using our best model as a callback in the objective function to select an optimal RFQ design. We consider trade-offs in RFQ performance for various choices of Pareto-optimal design variables—common issues for any multi-objective optimization scheme. Lastly, we make recommendations for input data preparation, selection, and neural network architectures that pave the way for future development of production-capable surrogate models for RFQs and other particle accelerators.

     
    more » « less
  4. Abstract Using plasma mirror injection we demonstrate, both analytically and numerically, that a circularly polarized helical laser pulse can accelerate highly collimated dense bunches of electrons to several hundred MeV using currently available laser systems. The circular-polarized helical (Laguerre–Gaussian) beam has a unique field structure where the transverse fields have helix-like wave-fronts which tend to zero on-axis where, at focus, there are large on-axis longitudinal magnetic and electric fields. The acceleration of electrons by this type of laser pulse is analyzed as a function of radial mode number and it is shown that the radial mode number has a profound effect on electron acceleration close to the laser axis. Using three-dimensional particle-in-cell simulations a circular-polarized helical laser beam with power of 0.6 PW is shown to produce several dense attosecond bunches. The bunch nearest the peak of the laser envelope has an energy of 0.47 GeV with spread as narrow as 10%, a charge of 26 pC with duration of ∼ 400 as, and a very low divergence of 20 mrad. The confinement by longitudinal magnetic fields in the near-axis region allows the longitudinal electric fields to accelerate the electrons over a long period after the initial reflection. Both the longitudinal E and B fields are shown to be essential for electron acceleration in this scheme. This opens up new paths toward attosecond electron beams, or attosecond radiation, at many laser facilities around the world. 
    more » « less
  5. Abstract

    Laser wakefield accelerators (LWFAs) have electric fields that are orders of magnitude larger than those of conventional accelerators, promising an attractive, small-scale alternative for next-generation light sources and lepton colliders. The maximum energy gain in a single-stage LWFA is limited by dephasing, which occurs when the trapped particles outrun the accelerating phase of the wakefield. Here, we demonstrate that a single space–time structured laser pulse can be used for ionization injection and electron acceleration over many dephasing lengths in the bubble regime. Simulations of a dephasingless laser wakefield accelerator driven by a 6.2-J laser pulse show 25 pC of injected charge accelerated over 20 dephasing lengths (1.3 cm) to a maximum energy of 2.1 GeV. The space–time structured laser pulse features an ultrashort, programmable-trajectory focus. Accelerating the focus, reducing the focused spot-size variation, and mitigating unwanted self-focusing stabilize the electron acceleration, which improves beam quality and leads to projected energy gains of 125 GeV in a single, sub-meter stage driven by a 500-J pulse.

     
    more » « less