This content will become publicly available on March 1, 2023
- Award ID(s):
- 1924617
- Publication Date:
- NSF-PAR ID:
- 10345786
- Journal Name:
- Journal of Dynamic Systems, Measurement, and Control
- Volume:
- 144
- Issue:
- 3
- ISSN:
- 0022-0434
- Sponsoring Org:
- National Science Foundation
More Like this
-
This paper aims to develop distributed feedback control algorithms that allow cooperative locomotion of quadrupedal robots which are coupled to each other by holonomic constraints. These constraints can arise from collaborative manipulation of objects during locomotion. In addressing this problem, the complex hybrid dynamical models that describe collaborative legged locomotion are studied. The complex periodic orbits (i.e., gaits) of these sophisticated and high-dimensional hybrid systems are investigated. We consider a set of virtual constraints that stabilizes locomotion of a single agent. The paper then generates modified and local virtual constraints for each agent that allow stable collaborative locomotion. Optimal distributed feedback controllers, based on nonlinear control and quadratic programming, are developed to impose the local virtual constraints. To demonstrate the power of the analytical foundation, an extensive numerical simulation for cooperative locomotion of two quadrupedal robots with robotic manipulators is presented. The numerical complex hybrid model has 64 continuous-time domains, 192 discrete-time transitions, 96 state variables, and 36 control inputs.
-
Can we design motion primitives for complex legged systems uniformly for different terrain types without neglecting modeling details? This paper presents a method for rapidly generating quadrupedal locomotion on sloped terrains-from modeling to gait generation, to hardware demonstration. At the core of this approach is the observation that a quadrupedal robot can be exactly decomposed into coupled bipedal robots. Formally, this is represented through the framework of coupled control systems, wherein isolated subsystems interact through coupling constraints. We demonstrate this concept in the context of quadrupeds and use it to reduce the gait planning problem for uneven terrains to bipedal walking generation via hybrid zero dynamics. This reduction method allows for the formulation of a nonlinear optimization problem that leverages low-dimensional bipedal representations to generate dynamic walking gaits on slopes for the full-order quadrupedal robot dynamics. The result is the ability to rapidly generate quadrupedal walking gaits on a variety of slopes. We demonstrate these walking behaviors on the Vision 60 quadrupedal robot; in simulation, via walking on a range of sloped terrains of 13°, 15°, 20°, 25°, and, experimentally, through the successful locomotion of 13° and 20° ~ 25° sloped outdoor grasslands.
-
This paper systematically decomposes a quadrupedal robot into bipeds to rapidly generate walking gaits and then recomposes these gaits to obtain quadrupedal locomotion. We begin by decomposing the full-order, nonlinear and hybrid dynamics of a three-dimensional quadrupedal robot, including its continuous and discrete dynamics, into two bipedal systems that are subject to external forces. Using the hybrid zero dynamics (HZD) framework, gaits for these bipedal robots can be rapidly generated (on the order of seconds) along with corresponding controllers. The decomposition is achieved in such a way that the bipedal walking gaits and controllers can be composed to yield dynamic walking gaits for the original quadrupedal robot - the result is the rapid generation of dynamic quadruped gaits utilizing the full-order dynamics. This methodology is demonstrated through the rapid generation (3.96 seconds on average) of four stepping-in-place gaits and one diagonally symmetric ambling gait at 0.35 m/s on a quadrupedal robot - the Vision 60, with 36 state variables and 12 control inputs - both in simulation and through outdoor experiments. This suggested a new approach for fast quadrupedal trajectory planning using full-body dynamics, without the need for empirical model simplification, wherein methods from dynamic bipedal walking can be directlymore »
-
Planning locomotion trajectories for legged microrobots is challenging. This is because of their complex morphology, high frequency passive dynamics, and discontinuous contact interactions with their environment. Consequently, such research is often driven by time-consuming experimental methods. As an alternative, we present a framework for systematically modeling, planning, and controlling legged microrobots. We develop a three- dimensional dynamic model of a 1.5 g quadrupedal microrobot with complexity (e.g., number of degrees of freedom) similar to larger-scale legged robots. We then adapt a recently developed variational contact-implicit trajectory optimization method to generate feasible whole-body locomotion plans for this microrobot, and demonstrate that these plans can be tracked with simple joint-space controllers. We plan and execute periodic gaits at multiple stride frequencies and on various surfaces. These gaits achieve high per-cycle velocities, including a maximum of 10.87 mm/cycle, which is 15% faster than previously measured for this microrobot. Furthermore, we plan and execute a vertical jump of 9.96 mm, which is 78% of the microrobot’s center-of- mass height. To the best of our knowledge, this is the first end-to-end demonstration of planning and tracking whole-body dynamic locomotion on a millimeter-scale legged microrobot.
-
Contact-based decision and planning methods are becoming increasingly important to endow higher levels of autonomy for legged robots. Formal synthesis methods derived from symbolic systems have great potential for reasoning about high-level locomotion decisions and achieving complex maneuvering behaviors with correctness guarantees. This study takes a first step toward formally devising an architecture composed of task planning and control of whole-body dynamic locomotion behaviors in constrained and dynamically changing environments. At the high level, we formulate a two-player temporal logic game between the multi-limb locomotion planner and its dynamic environment to synthesize a winning strategy that delivers symbolic locomotion actions. These locomotion actions satisfy the desired high-level task specifications expressed in a fragment of temporal logic. Those actions are sent to a robust finite transition system that synthesizes a locomotion controller that fulfills state reachability constraints. This controller is further executed via a low-level motion planner that generates feasible locomotion trajectories. We construct a set of dynamic locomotion models for legged robots to serve as a template library for handling diverse environmental events. We devise a replanning strategy that takes into consideration sudden environmental changes or large state disturbances to increase the robustness of the resulting locomotion behaviors. We formallymore »