skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: K → μ+μ− beyond the standard model
A bstract We analyze the New Physics sensitivity of a recently proposed method to measure the CP-violating $$ \mathcal{B} $$ B ( K S → μ + μ − ) ℓ =0 decay rate using K S − K L interference. We present our findings both in a model-independent EFT approach as well as within several simple NP scenarios. We discuss the relation with associated observables, most notably $$ \mathcal{B} $$ B ( K L → π 0 $$ \nu \overline{\nu} $$ ν ν ¯ ). We find that simple NP models can significantly enhance $$ \mathcal{B} $$ B ( K S → μ + μ − ) ℓ =0 , making this mode a very promising probe of physics beyond the standard model in the kaon sector.  more » « less
Award ID(s):
2014071
PAR ID:
10345893
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
3
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We calculate pp → ℓ + ν, ℓ − $$ \overline{\nu} $$ ν ¯ to $$ \mathcal{O} $$ O (1 / Λ 4 ) within the Standard Model Effective Field Theory (SMEFT) framework. In particular, we calculate the four-fermion contribution from dimension six and eight operators, which dominates at large center of mass energy. We explore the relative size of the $$ \mathcal{O} $$ O (1 / Λ 4 ) and $$ \mathcal{O} $$ O (1 / Λ 2 ) results for various kinematic regimes and assumptions about the Wilson coefficients. Results for Drell-Yan production pp → ℓ + ℓ − at $$ \mathcal{O} $$ O (1 / Λ 4 ) are also provided. Additionally, we develop the form for four fermion contact term contributions to pp → ℓ + ν, ℓ − $$ \overline{\nu} $$ ν ¯ , pp → ℓ + ℓ − of arbitrary mass dimension. This allows us to estimate the effects from even higher dimensional (dimension > 8) terms in the SMEFT framework. 
    more » « less
  2. A bstract A search for the lepton-flavour violating decays B 0 → K *0 μ ± e ∓ and $$ {B}_s^0 $$ B s 0 → ϕμ ± e ∓ is presented, using proton-proton collision data collected by the LHCb detector at the LHC, corresponding to an integrated luminosity of 9 fb − 1 . No significant signals are observed and upper limits of $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({B}^0\to {K}^{\ast 0}{\mu}^{+}{e}^{-}\right)<5.7\times {10}^{-9}\left(6.9\times {10}^{-9}\right),\\ {}\mathcal{B}\left({B}^0\to {K}^{\ast 0}{\mu}^{-}{e}^{+}\right)<6.8\times {10}^{-9}\left(7.9\times {10}^{-9}\right),\\ {}\mathcal{B}\left({B}^0\to {K}^{\ast 0}{\mu}^{\pm }{e}^{\mp}\right)<10.1\times {10}^{-9}\left(11.7\times {10}^{-9}\right),\\ {}\mathcal{B}\left({B}_s^0\to \phi {\mu}^{\pm }{e}^{\mp}\right)<16.0\times {10}^{-9}\left(19.8\times {10}^{-9}\right)\end{array}} $$ B B 0 → K ∗ 0 μ + e − < 5.7 × 10 − 9 6.9 × 10 − 9 , B B 0 → K ∗ 0 μ − e + < 6.8 × 10 − 9 7.9 × 10 − 9 , B B 0 → K ∗ 0 μ ± e ∓ < 10.1 × 10 − 9 11.7 × 10 − 9 , B B s 0 → ϕ μ ± e ∓ < 16.0 × 10 − 9 19.8 × 10 − 9 are set at 90% (95%) confidence level. These results constitute the world’s most stringent limits to date, with the limit on the decay $$ {B}_s^0 $$ B s 0 → ϕμ ± e ∓ the first being set. In addition, limits are reported for scalar and left-handed lepton-flavour violating New Physics scenarios. 
    more » « less
  3. A<sc>bstract</sc> We report a search for the charged-lepton flavor violation in Υ(2S) →ℓτ±(ℓ=e, μ) decays using a 25 fb−1Υ(2S) sample collected by the Belle detector at the KEKBe+easymmetric-energy collider. We find no evidence for a signal and set upper limits on the branching fractions ($$ \mathcal{B} $$ B ) at 90% confidence level. We obtain the most stringent upper limits:$$ \mathcal{B} $$ B (Υ(2S)→ μτ±)<0.23×10−6and$$ \mathcal{B} $$ B (Υ(2S)→ eτ±)<1.12×10−6
    more » « less
  4. A bstract A first search for the lepton-flavour violating decays B 0 → K *0 τ ± μ ∓ is presented. The analysis is performed using a sample of proton-proton collision data, collected with the LHCb detector at centre-of-mass energies of 7, 8 and 13 TeV between 2011 and 2018, corresponding to an integrated luminosity of 9 fb − 1 . No significant signal is observed, and upper limits on the branching fractions are determined to be $$ \mathcal{B}\left({B}^0\to {K}^{\ast 0}{\tau}^{+}{\mu}^{-}\right)<1.0(1.2)\times {10}^{-5} $$ B B 0 → K ∗ 0 τ + μ − < 1.0 1.2 × 10 − 5 and $$ \mathcal{B}\left({B}^0\to {K}^{\ast 0}{\tau}^{-}{\mu}^{+}\right)<8.2(9.8)\times {10}^{-6} $$ B B 0 → K ∗ 0 τ − μ + < 8.2 9.8 × 10 − 6 at the 90% (95%) confidence level. 
    more » « less
  5. The study of $$ \overline{B}\to {D}^{\ast}\tau {\overline{\nu}}_{\tau } $$angular distribution can be used to obtain information about new physics (or beyond the Standard Model) couplings, which are motivated by various B anomalies. However, the inability to measure precisely the three-momentum of the lepton hinders such measurements, as the tau decay contains one or more undetected neutrinos. Here, we present a measurable angular distribution of $$ \overline{B}\to {D}^{\ast}\tau {\overline{\nu}}_{\tau } $$ by considering the additional decay $$ \tau \to \ell {\nu}_{\tau }{\overline{\nu}}_{\ell } $$, wℓ. The full process used is$$ \overline{B}\to {D}^{\ast}\left(\to D\pi \right)\tau \left(\to \ell {\nu}_{\tau }{\overline{\nu}}_{\ell}\right){\overline{\nu}}_{\tau } $$ B ¯ D τ ν τ ν ¯ ν ¯ τ , in which only theℓandD*are reconstructed. A fit to the experimental angular distribution of this process can be used to extract information on new physics parameters. To demonstrate the feasibility of this approach, we generate simulated data for this process and perform a sensitivity study to obtain the expected statistical errors on new physics parameters from experiments in the near future. We obtain a sensitivity of the order of 5% for the right-handed current and around 6% for the tensor current. In addition, we use the recent lattice QCD data onB→D*form factors and obtain correlations between form factors and new physics parameters. 
    more » « less