skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gravity and the crossed product
A bstract Recently Leutheusser and Liu [1, 2] identified an emergent algebra of Type III 1 in the operator algebra of $$ \mathcal{N} $$ N = 4 super Yang-Mills theory for large N . Here we describe some 1/ N corrections to this picture and show that the emergent Type III 1 algebra becomes an algebra of Type II ∞ . The Type II ∞ algebra is the crossed product of the Type III 1 algebra by its modular automorphism group. In the context of the emergent Type II ∞ algebra, the entropy of a black hole state is well-defined up to an additive constant, independent of the state. This is somewhat analogous to entropy in classical physics.  more » « less
Award ID(s):
1911298
PAR ID:
10411139
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
10
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We describe an algebra of observables for a static patch in de Sitter space, with operators gravitationally dressed to the worldline of an observer. The algebra is a von Neumann algebra of Type II 1 . There is a natural notion of entropy for a state of such an algebra. There is a maximum entropy state, which corresponds to empty de Sitter space, and the entropy of any semiclassical state of the Type II 1 algebras agrees, up to an additive constant independent of the state, with the expected generalized entropy S gen = ( A/ 4 G N ) + S out . An arbitrary additive constant is present because of the renormalization that is involved in defining entropy for a Type II 1 algebra. 
    more » « less
  2. A<sc>bstract</sc> We construct a Type IIvon Neumann algebra that describes the largeNphysics of single-trace operators in AdS/CFT in the microcanonical ensemble, where there is no need to include perturbative 1/Ncorrections. Using only the extrapolate dictionary, we show that the entropy of semiclassical states on this algebra is holographically dual to the generalized entropy of the black hole bifurcation surface. From a boundary perspective, this constitutes a derivation of a special case of the QES prescription without any use of Euclidean gravity or replicas; from a purely bulk perspective, it is a derivation of the quantum-corrected Bekenstein-Hawking formula as the entropy of an explicit algebra in theG →0 limit of Lorentzian effective field theory quantum gravity. In a limit where a black hole is first allowed to equilibrate and then is later potentially re-excited, we show that the generalized second law is a direct consequence of the monotonicity of the entropy of algebras under trace-preserving inclusions. Finally, by considering excitations that are separated by more than a scrambling time we construct a “free product” von Neumann algebra that describes the semiclassical physics of long wormholes supported by shocks. We compute Rényi entropies for this algebra and show that they are equal to a sum over saddles associated to quantum extremal surfaces in the wormhole. Surprisingly, however, the saddles associated to “bulge” quantum extremal surfaces contribute with a negative sign. 
    more » « less
  3. It has been shown that entropy differences between certain states of perturbative quantum gravity can be computed without specifying an ultraviolet completion. This is analogous to the situation in classical statistical mechanics, where entropy differences are defined but absolute entropy is not. Unlike in classical statistical mechanics, however, the entropy differences computed in perturbative quantum gravity do not have a clear physical interpretation. Here we construct a family of perturbative black hole states for which the entropy difference can be interpreted as a relative counting of states. Conceptually, this Letter begins with the algebra of mass fluctuations around a fixed black hole background, and points out that while this is a type I algebra, it is not a factor and therefore has no canonical definition of entropy. As in previous work, coupling the mass fluctuations to quantum matter embeds the mass algebra within a type II factor, in which entropy differences (but not absolute entropies) are well defined. It is then shown that for microcanonical wave functions of mass fluctuation, the type II entropy difference equals the logarithm of the dimension of the extra Hilbert space that is needed to map one microcanonical window to another using gauge-invariant unitaries. The Letter closes with comments on type II entropy difference in a more general class of states, where the von Neumann entropy difference does not have a physical interpretation, but “one-shot” entropy differences do. Published by the American Physical Society2024 
    more » « less
  4. A bstract We analyze the error correcting properties of the Sachdev-Ye-Kitaev model, with errors that correspond to erasures of subsets of fermions. We study the limit where the number of fermions erased is large but small compared to the total number of fermions. We compute the price of the quantum error correcting code, defined as the number of physical qubits needed to reconstruct whether a given operator has been acted upon the thermal state or not. By thinking about reconstruction via quantum teleportation, we argue for a bound that relates the price to the ordinary operator size in systems that display so-called detailed size winding [1]. We then find that in SYK the price roughly saturates this bound. Computing the price requires computing modular flowed correlators with respect to the density matrix associated to a subset of fermions. We offer an interpretation of these correlators as probing a quantum extremal surface in the AdS dual of SYK. In the large N limit, the operator algebras associated to subsets of fermions in SYK satisfy half-sided modular inclusion, which is indicative of an emergent Type III1 von Neumann algebra. We discuss the relationship between the emergent algebra of half-sided modular inclusions and bulk symmetry generators. 
    more » « less
  5. Trace inequalities are general techniques with many applications in quantum information theory, often replacing the classical functional calculus in noncommutative settings. The physics of quantum field theory and holography, however, motivates entropy inequalities in type III von Neumann algebras that lack a semifinite trace. The Haagerup and Kosaki Lp spaces enable re-expressing trace inequalities in non-tracial von Neumann algebras. In particular, we show this for the generalized Araki–Lieb–Thirring and Golden–Thompson inequalities from the work of Sutter et al. [Commun. Math. Phys. 352(1), 37 (2017)]. Then, using the Haagerup approximation method, we prove a general von Neumann algebra version of universal recovery map corrections to the data processing inequality for relative entropy. We also show subharmonicity of a logarithmic p-fidelity of recovery. Furthermore, we prove that the non-decrease of relative entropy is equivalent to the existence of an L1-isometry implementing the channel on both input states. 
    more » « less