The introduction of electron-withdrawing groups on 8(meso)-pyridyl-BODIPYs tends to increase the fluorescence quantum yields of this type of compound due to the decrease in electronic charge density on the BODIPY core. A new series of 8(meso)-pyridyl-BODIPYs bearing a 2-, 3-, or 4-pyridyl group was synthesized and functionalized with nitro and chlorine groups at the 2,6-positions. The 2,6-methoxycarbonyl-8-pyridyl-BODIPYs analogs were also synthesized by condensation of 2,4-dimethyl-3-methoxycarbonyl-pyrrole with 2-, 3-, or 4-formylpyridine followed by oxidation and boron complexation. The structures and spectroscopic properties of the new series of 8(meso)-pyridyl-BODIPYs were investigated both experimentally and computationally. The BODIPYs bearing 2,6-methoxycarbonyl groups showed enhanced relative fluorescence quantum yields in polar organic solvents due to their electron-withdrawing effect. However, the introduction of a single nitro group significantly quenched the fluorescence of the BODIPYs and caused hypsochromic shifts in the absorption and emission bands. The introduction of a chloro substituent partially restored the fluorescence of the mono-nitro-BODIPYs and induced significant bathochromic shifts.
more »
« less
A Comparison of the Photophysical, Electrochemical and Cytotoxic Properties of meso-(2-, 3- and 4-Pyridyl)-BODIPYs and Their Derivatives
Boron dipyrromethene (BODIPY) dyes bearing a pyridyl moiety have been used as metal ion sensors, pH sensors, fluorescence probes, and as sensitizers for phototherapy. A comparative study of the properties of the three structural isomers of meso-pyridyl-BODIPYs, their 2,6-dichloro derivatives, and their corresponding methylated cationic pyridinium-BODIPYs was conducted using spectroscopic and electrochemical methods, X-ray analyses, and TD-DFT calculations. Among the neutral derivatives, the 3Py and 4Py isomers showed the highest relative fluorescence quantum yields in organic solvents, which were further enhanced 2-4-fold via the introduction of two chlorines at the 2,6-positions. Among the cationic derivatives, the 2catPy showed the highest relative fluorescence quantum yield in organic solvents, which was further enhanced by the use of a bulky counter anion (PF6−). In water, the quantum yields were greatly reduced for all three isomers but were shown to be enhanced upon introduction of 2,6-dichloro groups. Our results indicate that 2,6-dichloro-meso-(2- and 3-pyridinium)-BODIPYs are the most promising for sensing applications. Furthermore, all pyridinium BODIPYs are highly water-soluble and display low cytotoxicity towards human HEp2 cells.
more »
« less
- Award ID(s):
- 2055190
- PAR ID:
- 10345984
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 22
- Issue:
- 14
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 5121
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recently, a series of 8(meso)-pyridyl-BODIPYs (2-pyridyl, 3-pyridyl, and 4-pyridyl) and their 2,6-substituted derivatives were synthesized and their structure and photophysical properties were studied both experimentally and computationally. One of the main observed trends was that the 2-pyridyl-BODIPYs were consistently less fluorescent than their 3-pyridyl and 4-pyridyl analogs, regardless of the 2,6-substituents. Herein, we extend our previous computational studies and model not only the ground but also the excited states of the entire series of previously synthesized meso-pyridyl-BODIPYs with the aim of explaining the observed differences in the emission quantum yields. To better understand the trends and the effect of 2- and 2,6-substitution on the photophysical and electron-density-related properties, we also model the ground and excited states of BODIPYs that were not synthesized experimentally, however represent a logical part of the series. We calculate a variety of molecular properties and propose that the experimentally observed low quantum yields for all 2-pyridyl-BODIPYs could be due to the very flat potential energy surfaces with respect to the rotation of the 2-pyridyl ring in the excited states, and the stability of a non-planar and significantly less fluorescent meso-2-pyridyl-BODIPY structure.more » « less
-
A 1,3,5,7-tetramethyl-8-(2,4,6-triphenylphenyl)-BODIPY and its 2,6-dichloro derivative were synthesized and their spectroscopic properties compared experimentally and computationally with those of the corresponding 8-phenyl and 8-mesityl derivatives. The new 2,6-dichloro-1,3,5,7-tetramethyl-8-(2,4,6-triphenylphenyl)-BODIPY shows the highest fluorescence quantum yields in dichloromethane and toluene.more » « less
-
Novel tetraaryl-(pyridinium-4-yl)-tetrabenzoporphyrins have been successfully synthesized via a Heck-based sequence reaction. These tetrabenzoporphyrins were substituted with eight pyridyl groups at the fused benzene rings. Methylation of the pyridyl groups with methyl iodide afforded highly water soluble tetrabenzoporphyrins carrying eight ionic groups. The extended [Formula: see text]-conjugation broadened and red-shifted the absorption band of these porphyrins to 650–750 nm. These cationic tetrabenzoporphyrins showed non-toxicity in the dark up to 100 uM. High phototoxicity with IC[Formula: see text] values lower than 18 [Formula: see text]M were obtained for these tetrabenzoporphyrins.more » « less
-
Abstract Toluidine blue O (TBO) is a water‐soluble photosensitizer that has been used in photodynamic antimicrobial and anticancer treatments, but suffers from limited solubility in hydrophobic media. In an effort to incrementally increase TBO’s hydrophobicity, we describe the synthesis of hexanoic (TBOC6) and myristic (TBOC14) fatty acid derivatives of TBO formed in low to moderate percent yields by condensation with the free amine site. Covalently linking 6 and 14 carbon chains led to modifications of not only TBO’s solubility, but also its photophysical and photochemical properties. TBOC6 and TBOC14 derivatives were more soluble in organic solvents and showed hypsochromic shifts in their absorption and emission bands. The solubility in phosphate buffer solution was low for both TBOC6 and TBOC14, but unexpectedly slightly greater in the latter. Both TBOC6 and TBOC14 showed decreased triplet excited‐state lifetimes and singlet oxygen quantum yields in acetonitrile, which was attributed to heightened aggregation of these conjugates particularly at high concentrations due to the hydrophobic “tails.” While in diluted aqueous buffer solution, indirect measurements showed similar efficiency in singlet oxygen generation for TBOC14 compared to TBO. This work demonstrates a facile synthesis of fatty acid TBO derivatives leading to amphiphilic compounds with a delocalized cationic “head” group and hydrophobic “tails” for potential to accumulate into biological membranes or membrane/aqueous interfaces in PDT applications.more » « less
An official website of the United States government

