The introduction of electron-withdrawing groups on 8(meso)-pyridyl-BODIPYs tends to increase the fluorescence quantum yields of this type of compound due to the decrease in electronic charge density on the BODIPY core. A new series of 8(meso)-pyridyl-BODIPYs bearing a 2-, 3-, or 4-pyridyl group was synthesized and functionalized with nitro and chlorine groups at the 2,6-positions. The 2,6-methoxycarbonyl-8-pyridyl-BODIPYs analogs were also synthesized by condensation of 2,4-dimethyl-3-methoxycarbonyl-pyrrole with 2-, 3-, or 4-formylpyridine followed by oxidation and boron complexation. The structures and spectroscopic properties of the new series of 8(meso)-pyridyl-BODIPYs were investigated both experimentally and computationally. The BODIPYs bearing 2,6-methoxycarbonyl groups showed enhanced relative fluorescence quantum yields in polar organic solvents due to their electron-withdrawing effect. However, the introduction of a single nitro group significantly quenched the fluorescence of the BODIPYs and caused hypsochromic shifts in the absorption and emission bands. The introduction of a chloro substituent partially restored the fluorescence of the mono-nitro-BODIPYs and induced significant bathochromic shifts.
more »
« less
This content will become publicly available on December 1, 2025
Substituent Effects on the Photophysical Properties of a Series of 8(meso)-Pyridyl-BODIPYs: A Computational Analysis of the Experimental Data
Recently, a series of 8(meso)-pyridyl-BODIPYs (2-pyridyl, 3-pyridyl, and 4-pyridyl) and their 2,6-substituted derivatives were synthesized and their structure and photophysical properties were studied both experimentally and computationally. One of the main observed trends was that the 2-pyridyl-BODIPYs were consistently less fluorescent than their 3-pyridyl and 4-pyridyl analogs, regardless of the 2,6-substituents. Herein, we extend our previous computational studies and model not only the ground but also the excited states of the entire series of previously synthesized meso-pyridyl-BODIPYs with the aim of explaining the observed differences in the emission quantum yields. To better understand the trends and the effect of 2- and 2,6-substitution on the photophysical and electron-density-related properties, we also model the ground and excited states of BODIPYs that were not synthesized experimentally, however represent a logical part of the series. We calculate a variety of molecular properties and propose that the experimentally observed low quantum yields for all 2-pyridyl-BODIPYs could be due to the very flat potential energy surfaces with respect to the rotation of the 2-pyridyl ring in the excited states, and the stability of a non-planar and significantly less fluorescent meso-2-pyridyl-BODIPY structure.
more »
« less
- PAR ID:
- 10633944
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Physchem
- Volume:
- 4
- Issue:
- 4
- ISSN:
- 2673-7167
- Page Range / eLocation ID:
- 483 to 494
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Boron dipyrromethene (BODIPY) dyes bearing a pyridyl moiety have been used as metal ion sensors, pH sensors, fluorescence probes, and as sensitizers for phototherapy. A comparative study of the properties of the three structural isomers of meso-pyridyl-BODIPYs, their 2,6-dichloro derivatives, and their corresponding methylated cationic pyridinium-BODIPYs was conducted using spectroscopic and electrochemical methods, X-ray analyses, and TD-DFT calculations. Among the neutral derivatives, the 3Py and 4Py isomers showed the highest relative fluorescence quantum yields in organic solvents, which were further enhanced 2-4-fold via the introduction of two chlorines at the 2,6-positions. Among the cationic derivatives, the 2catPy showed the highest relative fluorescence quantum yield in organic solvents, which was further enhanced by the use of a bulky counter anion (PF6−). In water, the quantum yields were greatly reduced for all three isomers but were shown to be enhanced upon introduction of 2,6-dichloro groups. Our results indicate that 2,6-dichloro-meso-(2- and 3-pyridinium)-BODIPYs are the most promising for sensing applications. Furthermore, all pyridinium BODIPYs are highly water-soluble and display low cytotoxicity towards human HEp2 cells.more » « less
-
Luminescent lanthanides possess ideal properties for biological imaging, including long luminescent lifetimes and emission within the optical window. Here, we report a novel approach to responsive luminescent Tb( iii ) probes that involves direct modulation of the antenna excited triplet state energy. If the triplet energy lies too close to the 5 D 4 Tb( iii ) excited state (20 500 cm −1 ), energy transfer to 5 D 4 competes with back energy transfer processes and limits lanthanide-based emission. To validate this approach, a series of pyridyl-functionalized, macrocyclic lanthanide complexes were designed, and the corresponding lowest energy triplet states were calculated using density functional theory (DFT). Subsequently, three novel constructs L3 (nitro-pyridyl), L4 (amino-pyridyl) and L5 (fluoro-pyridyl) were synthesized. Photophysical characterization of the corresponding Gd( iii ) complexes revealed antenna triplet energies between 25 800 and 30 400 cm −1 and a 500-fold increase in quantum yield upon conversion of Tb( L3 ) to Tb( L4 ) using the biologically relevant analyte H 2 S. The corresponding turn-on reaction can be monitored using conventional, small-animal optical imaging equipment in presence of a Cherenkov radiation emitting isotope as an in situ excitation source, demonstrating that antenna triplet state energy modulation represents a viable approach to biocompatible, Tb-based optical turn-on probes.more » « less
-
In this work, a series of eight similarly structured perinone chromophores were synthesized and photophysically characterized to elucidate the electronic and structural tunability of their excited state properties, including excited state redox potentials and fluorescence lifetimes/quantum yields. Despite their similar structure, these chromophores exhibited a broad range of visible absorption properties, quantum yields, and excited state lifetimes. In conjunction with static and time-resolved spectroscopies from the ultrafast to nanosecond time regimes, time-dependent computational modeling was used to correlate this behavior to the relationship between non-radiative decay and the energy-gap law. Additionally, the ground and excited state redox potentials were calculated and found to be tunable over a range of 1 V depending on the diamine or anhydride used in their synthesis ( E red * = 0.45–1.55 V; E ox * = −0.88 to −1.67 V), which is difficult to achieve with typical photoredox-active transition metal complexes. These diverse chromophores can be easily prepared, and with their range of photophysical tunability, will be valuable for future use in photofunctional applications.more » « less
-
Abstract Meso‐nitrile oxide group in 1,7‐Diphenyl‐containing BODIPYs can be involved in highly unusual [3+2] intramolecular cycloaddition reaction with the formation of the dihydrobenzo[d]isoxazole‐containing BODIPYs. Oxidation of these compounds results in the formation of unprecedented either benzisoxazole‐ or benzo[b]azepine‐fused fully conjugated NIR absorbing BODIPYs. The photophysical properties and electronic structures of the target compounds were studied by an array of experimental and theoretical methods.more » « less
An official website of the United States government
