skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Network Properties of Electrically Coupled Bursting Pituitary Cells
The endocrine cells of the anterior pituitary gland are electrically active when stimulated or, in some cases, when not inhibited. The activity pattern thought to be most effective in releasing hormones is bursting, which consists of depolarization with small spikes that are much longer than single spikes. Although a majority of the research on cellular activity patterns has been performed on dispersed cells, the environment in situ is characterized by networks of coupled cells of the same type, at least in the case of somatotrophs and lactotrophs. This produces some degree of synchronization of their activity, which can be greatly increased by hormones and changes in the physiological state. In this computational study, we examine how electrical coupling among model cells influences synchronization of bursting oscillations among the population. We focus primarily on weak electrical coupling, since strong coupling leads to complete synchronization that is not characteristic of pituitary cell networks. We first look at small networks to point out several unexpected behaviors of the coupled system, and then consider a larger random scale-free network to determine what features of the structural network formed through gap junctional coupling among cells produce a high degree of functional coupling, i.e., clusters of synchronized cells. We employ several network centrality measures, and find that cells that are closely related in terms of their closeness centrality are most likely to be synchronized. We also find that structural hubs (cells with extensive coupling to other cells) are typically not functional hubs (cells synchronized with many other cells). Overall, in the case of weak electrical coupling, it is hard to predict the functional network that arises from a structural network, or to use a functional network as a means for determining the structural network that gives rise to it.  more » « less
Award ID(s):
1853342
PAR ID:
10346036
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Frontiers in Endocrinology
Volume:
13
ISSN:
1664-2392
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gutkin, Boris S (Ed.)
    The endocrine cells of the pituitary gland are electrically active, andin vivothey form small networks where the bidirectional cell-cell coupling is through gap junctions. Numerous studies of dispersed pituitary cells have shown that typical behaviors are tonic spiking and bursting, the latter being more effective at evoking secretion. In this article, we use mathematical modeling to examine the dynamics of small networks of spiking and bursting pituitary cells. We demonstrate that intrinsic bursting cells are capable of converting intrinsic spikers into bursters, and perform a fast/slow analysis to show why this occurs. We then demonstrate the sensitivity of network dynamics to the placement of bursting cells within the network, and demonstrate strategies that are most effective at maximizing secretion from the population of cells. This study provides insights into thein vivobehavior of cells such as the stress-hormone-secreting pituitary corticotrophs that are switched from spiking to bursting by hypothalamic neurohormones. While much is known about the electrical properties of these cells when isolated from the pituitary, how they behave when part of an electrically coupled network has been largely unstudied. 
    more » « less
  2. We investigate the dynamical behavior of the oscillatory electrodissolution of nickel and hydrogen reduction reaction in a closed electrochemical bipolar cell with two nickel wires. In the bipolar setup, two-half U cells are separated by an epoxy plate with the two embedded nickel electrodes; the oxidation and reduction reactions take place at the two ends of the same wire. The electrode potential oscillations were found to be strongly synchronized with 1 mm diameter electrodes in an in-phase configuration. Because experiments in similar configurations with traditional (three-electrode) cell showed no synchronization of the oscillatory anodic nickel electrodissolution, the introduction of the cathodic side of the bipolar electrodes induced the synchronization. The results were interpreted with a model that considered the kinetically coupled cathode-anode dynamics as well as interactions on the cathode and the anode side through migration current mediated potential drops in the electrolyte. The electrical coupling strength was calculated from solution resistance and charge transfer resistance measurements. The theory correctly interpreted that the bipolar cell with large (1 mm diameter) electrodes exhibits strong coupling with synchronization, and the bipolar cell with small (0.25 mm diameter) electrodes and the traditional configuration exhibit weak coupling and thus desynchronization. The experiments demonstrate the use of bipolar electrochemical cells for the investigation of collective behavior of electrochemical processes and the proposed approach holds promise for the design of bipolar multi-electrode arrays with engineered coupling to promote sensing and information processing using microchips. 
    more » « less
  3. Neural network flexibility includes changes in neuronal participation between networks, such as the switching of neurons between single- and dual-network activity. We previously identified a neuron that is recruited to burst in time with an additional network via modulation of its intrinsic membrane properties, instead of being recruited synaptically into the second network. However, the modulated intrinsic properties were not determined. Here, we use small networks in the Jonah crab ( Cancer borealis) stomatogastric nervous system (STNS) to examine modulation of intrinsic properties underlying neuropeptide (Gly 1 -SIFamide)-elicited neuronal switching. The lateral posterior gastric neuron (LPG) switches from exclusive participation in the fast pyloric (∼1 Hz) network, due to electrical coupling, to dual-network activity that includes periodic escapes from the fast rhythm via intrinsically generated oscillations at the slower gastric mill network frequency (∼0.1 Hz). We isolated LPG from both networks by pharmacology and hyperpolarizing current injection. Gly 1 -SIFamide increased LPG intrinsic excitability and rebound from inhibition and decreased spike frequency adaptation, which can all contribute to intrinsic bursting. Using ion substitution and channel blockers, we found that a hyperpolarization-activated current, a persistent sodium current, and calcium or calcium-related current(s) appear to be primary contributors to Gly 1 -SIFamide-elicited LPG intrinsic bursting. However, this intrinsic bursting was more sensitive to blocking currents when LPG received rhythmic electrical coupling input from the fast network than in the isolated condition. Overall, a switch from single- to dual-network activity can involve modulation of multiple intrinsic properties, while synaptic input from a second network can shape the contributions of these properties. NEW & NOTEWORTHY Neuropeptide-elicited intrinsic bursting was recently determined to switch a neuron from single- to dual-network participation. Here we identified multiple intrinsic properties modulated in the dual-network state and candidate ion channels underlying the intrinsic bursting. Bursting at the second network frequency was more sensitive to blocking currents in the dual-network state than when neurons were synaptically isolated from their home network. Thus, synaptic input can shape the contributions of modulated intrinsic properties underlying dual-network activity. 
    more » « less
  4. To maintain normal functionality, it is necessary for a multicellular organism to generate robust responses to external temporal signals. However, the underlying mechanisms to coordinate the collective dynamics of cells remain poorly understood. Here, we study the calcium activity of biological neuron networks excited by periodic ATP stimuli. We use micropatterning to control the cells' physical connectivity. We find that whereas isolated cells become more synchronized in their calcium activity at long driving periods, connected cells become less synchronized, despite expressing more gap junctions which enable calcium exchange. To understand this result, we use a mathematical model in which a bifurcation analysis has previously shown coupling-induced desynchronization in an oscillatory network. Using parameters close to this bifurcation but in the excitable regime, we find that this desynchronization persists and can explain the experimental observations. The model further predicts that co-culturing with gap-junction-deficient cells should restore synchronization, which experiments confirm. Combining quantitative experiments, the physical and biological manipulation of cells, and mathematical modeling, our results suggest that cell-to-cell connectivity significantly affects how populations encode an external temporal signal as it slows down: Sparse networks synchronize due to longer entrainment, whereas highly connected networks can desynchronize due to dynamic frustration. Published by the American Physical Society2025 
    more » « less
  5. The synchronization dynamics for the circadian gene expression in the suprachiasmatic nucleus is investigated using a transcriptional circadian clock gene oscillator model. With global coupling in constant dark (DD) conditions, the model exhibits a one-cluster phase synchronized state, in dim light (dim LL), bistability between one- and two-cluster states and in bright LL, a two-cluster state. The two-cluster phase synchronized state, where some oscillator pairs synchronize in-phase, and some anti-phase, can explain the splitting of the circadian clock, i.e., generation of two bouts of daily activities with certain species, e.g., with hamsters. The one- and two-cluster states can be reached by transferring the animal from DD or bright LL to dim LL, i.e., the circadian synchrony has a memory effect. The stability of the one- and two-cluster states was interpreted analytically by extracting phase models from the ordinary differential equation models. In a modular network with two strongly coupled oscillator populations with weak intragroup coupling, with appropriate initial conditions, one group is synchronized to the one-cluster state and the other group to the two-cluster state, resulting in a weak-chimera state. Computational modeling suggests that the daily rhythms in sleep–wake depend on light intensity acting on bilateral networks of suprachiasmatic nucleus (SCN) oscillators. Addition of a network heterogeneity (coupling between the left and right SCN) allowed the system to exhibit chimera states. The simulations can guide experiments in the circadian rhythm research to explore the effect of light intensity on the complexities of circadian desynchronization. 
    more » « less