skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1853342

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Neuronal polarization, a process wherein nascent neurons develop a single long axon and multiple short dendrites, can occur within in vitro cell cultures without environmental cues. This is an apparently random process in which one of several short processes, called neurites, grows to become long, while the others remain short. In this study, we propose a minimum model for neurite growth, which involves bistability and random excitations reflecting actin waves. Positive feedback is needed to produce the bistability, while negative feedback is required to ensure that no more than one neurite wins the winner-takes-all contest. By applying the negative feedback to different aspects of the neurite growth process, we demonstrate that targeting the negative feedback to the excitation amplitude results in the most persistent polarization. Also, we demonstrate that there are optimal ranges of values for the neurite count, and for the excitation rate and amplitude that best maintain the polarization. Finally, we show that a previously published model for neuronal polarization based on competition for limited resources shares key features with our best-performing minimal model: bistability and negative feedback targeted to the size of random excitations. 
    more » « less
  2. The standard model for Ca 2+ oscillations in insulin-secreting pancreatic β cells centers on Ca 2+ entry through voltage-activated Ca 2+ channels. These work in combination with ATP-dependent K + channels, which are the bridge between the metabolic state of the cells and plasma membrane potential. This partnership underlies the ability of the β cells to secrete insulin appropriately on a minute-to-minute time scale to control whole body plasma glucose. Though this model, developed over more than 40 years through many cycles of experimentation and mathematical modeling, has been very successful, it has been challenged by a hypothesis that calcium-induced calcium release from the endoplasmic reticulum through ryanodine or inositol trisphosphate (IP3) receptors is instead the key driver of islet oscillations. We show here that the alternative model is in fact incompatible with a large body of established experimental data and that the new observations offered in support of it can be better explained by the standard model. 
    more » « less
  3. The endocrine cells of the anterior pituitary gland are electrically active when stimulated or, in some cases, when not inhibited. The activity pattern thought to be most effective in releasing hormones is bursting, which consists of depolarization with small spikes that are much longer than single spikes. Although a majority of the research on cellular activity patterns has been performed on dispersed cells, the environment in situ is characterized by networks of coupled cells of the same type, at least in the case of somatotrophs and lactotrophs. This produces some degree of synchronization of their activity, which can be greatly increased by hormones and changes in the physiological state. In this computational study, we examine how electrical coupling among model cells influences synchronization of bursting oscillations among the population. We focus primarily on weak electrical coupling, since strong coupling leads to complete synchronization that is not characteristic of pituitary cell networks. We first look at small networks to point out several unexpected behaviors of the coupled system, and then consider a larger random scale-free network to determine what features of the structural network formed through gap junctional coupling among cells produce a high degree of functional coupling, i.e., clusters of synchronized cells. We employ several network centrality measures, and find that cells that are closely related in terms of their closeness centrality are most likely to be synchronized. We also find that structural hubs (cells with extensive coupling to other cells) are typically not functional hubs (cells synchronized with many other cells). Overall, in the case of weak electrical coupling, it is hard to predict the functional network that arises from a structural network, or to use a functional network as a means for determining the structural network that gives rise to it. 
    more » « less
  4. In fasted and fed states, blood insulin levels are oscillatory. While this phenomenon is well studied at high glucose levels, comparatively little is known about its origin under basal conditions. We propose a possible mechanism for basal insulin oscillations based on oscillations in glycolysis, demonstrated using an established mathematical model. At high glucose, this is superseded by a calcium-dependent mechanism. 
    more » « less