Understanding a student's problem-solving strategy can have a significant impact on effective math learning using Intelligent Tutoring Systems (ITSs) and Adaptive Instructional Systems (AISs). For instance, the ITS/AIS can better personalize itself to correct specific misconceptions that are indicated by incorrect strategies, specific problems can be designed to improve strategies and frustration can be minimized by adapting to a student's natural way of thinking rather than trying to fit a standard strategy for all. While it may be possible for human experts to identify strategies manually in classroom settings with sufficient student interaction, it is not possible to scale this up to big data. Therefore, we leverage advances in Machine Learning and AI methods to perform scalable strategy prediction that is also fair to students at all skill levels. Specifically, we develop an embedding called MVec where we learn a representation based on the mastery of students. We then cluster these embeddings with a non-parametric clustering method where each cluster contains instances that have approximately symmetrical strategies. The strategy prediction model is trained on instances sampled from these clusters ensuring that we train the model over diverse strategies. Using real world large-scale student interaction datasets from MATHia, we show that our approach can scale up to achieve high accuracy by training on a small sample of a large dataset and also has predictive equality, i.e., it can predict strategies equally well for learners at diverse skill levels.
more »
« less
Leveraging Affect Transfer Learning for Behavior Prediction in an Intelligent Tutoring System
In this work, we propose a video-based transfer learning approach for predicting problem outcomes of students working with an intelligent tutoring system (ITS). By analyzing a student's face and gestures, our method predicts the outcome of a student answering a problem in an ITS from a video feed. Our work is motivated by the reasoning that the ability to predict such outcomes enables tutoring systems to adjust interventions, such as hints and encouragement, and to ultimately yield improved student learning. We collected a large labeled dataset of student interactions with an intelligent online math tutor consisting of 68 sessions, where 54 individual students solved 2,749 problems. We will release this dataset publicly upon publication of this paper. It will be available at https://www.cs.bu.edu/faculty/betke/research/learning/. Working with this dataset, our transfer-learning challenge was to design a representation in the source domain of pictures obtained “in the wild” for the task of facial expression analysis, and transferring this learned representation to the task of human behavior prediction in the domain of webcam videos of students in a classroom environment. We developed a novel facial affect representation and a user-personalized training scheme that unlocks the potential of this representation. We designed several variants of a recurrent neural network that models the temporal structure of video sequences of students solving math problems. Our final model, named ATL-BP for Affect Transfer Learning for Behavior Prediction, achieves a relative increase in mean F -score of 50 % over the state-of-the-art method on this new dataset.
more »
« less
- Award ID(s):
- 1551572
- PAR ID:
- 10346044
- Date Published:
- Journal Name:
- 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021)
- Page Range / eLocation ID:
- 1 - 8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A significant amount of research has illustrated the impact of student emotional and affective state on learning outcomes. Just as human teachers and tutors often adapt instruction to accommodate changes in student affect, the ability for computer-based systems to similarly become affect-aware, detecting and personalizing instruction in response to student affective state, could significantly improve student learning. Personalized and affective interventions in tutoring systems can be realized through affect-aware learning technologies to deter students from practicing poor learning behaviors in response to negative affective states and to optimize the amount of learning that occurs over time. In this paper, we build off previous work in affect detection within intelligent tutoring systems (ITS) by applying two methodologies to develop sensor-free models of student affect with only data recorded from middle-school students interacting with an ITS. We develop models of four affective states to evaluate and determine significant predictors of affect. Namely, we develop a model which discerns students’ reported interest significantly better than majority class.more » « less
-
Mendez, G.; Matsuda, N.; Santos, O. C.; Dimitrova, V. (Ed.)The dual mechanisms of control framework describes two modes of goal-directed behavior: proactive control (goal maintenance) and reactive control (goal activation on task demands). Although these mechanisms are relevant to learner behaviors during interaction with intelligent tutoring systems (ITS), their relation to ITSs is under-researched. We propose a manipulation to induce proactive or reactive control during interaction with an online tutoring system. We present two experiments where students solved problems using either proactive or reactive control. Study 1 validates the manipulation by investigating behavioral measures that reflect usage of the intended strategy and assesses whether either mode impacted learning. Study 2 investigates if alternating between control modes during problem solving affects student performance.more » « less
-
Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)Knowledge Tracing (KT) focuses on quantifying student knowledge according to the student's past performance. While KT models focus on modeling student knowledge, they miss the behavioral aspect of learning, such as the types of learning materials that the students choose to learn from. This is mainly because traditional knowledge tracing (KT) models only consider assessed activities, like solving questions. Recently, there has been a growing interest in multi-type KT which considers both assessed and non-assessed activities (like video lectures). Since multi-type KT models include different learning material types, they present a new opportunity to investigate student behavior, as in the choice of the learning material type, along with student knowledge. We argue that student knowledge can affect their behavior, and student interest in learning materials may affect their knowledge. In this paper, we model the relationship between students' knowledge states and their choice of learning activities. To this end, we propose Pareto-TAMKOT which frames the simultaneous learning of student knowledge and behavior as a multi-task learning problem. It employs a transition-aware multi-activity KT method for two objectives: modeling student knowledge and student behavior. Pareto-TAMKOT uses the Pareto Multi-task learning algorithm (Pareto MTL) to solve this multi-objective optimization problem. We evaluate Pareto-TAMKOT on one real-world dataset, demonstrating the benefit of approaching student knowledge and behavior modeling as a multi-task learning problem.more » « less
-
Olney, AM; Chounta, IA; Liu, Z; Santos, OC; Bittencourt, II (Ed.)This work investigates how tutoring discourse interacts with students’ proximal knowledge to explain and predict students’ learning outcomes. Our work is conducted in the context of high-dosage human tutoring where 9th-grade students attended small group tutorials and individually practiced problems on an Intelligent Tutoring System (ITS). We analyzed whether tutors’ talk moves and students’ performance on the ITS predicted scores on math learning assessments. We trained Random Forest Classifiers (RFCs) to distinguish high and low assessment scores based on tutor talk moves, student’s ITS performance metrics, and their combination. A decision tree was extracted from each RFC to yield an interpretable model. We found AUCs of 0.63 for talk moves, 0.66 for ITS, and 0.77 for their combination, suggesting interactivity among the two feature sources. Specifically, the best decision tree emerged from combining the tutor talk moves that encouraged rigorous thinking and students’ ITS mastery. In essence, tutor talk that encouraged mathematical reasoning predicted achievement for students who demonstrated high mastery on the ITS, whereas tutors’ revoicing of students’ mathematical ideas and contributions was predictive for students with low ITS mastery. Implications for practice are discussed.more » « less