WIMPs, weakly-interacting massive particles, have been leading candidates for particle dark matter for decades, and they remain a viable and highly motivated possibility. In these lectures, I describe the basic motivations for WIMPs, beginning with the WIMP miracle and its under-appreciated cousin, the discrete WIMP miracle. I then give an overview of some of the basic features of WIMPs and how to find them. These lectures conclude with some variations on the WIMP theme that have by now become significant topics in their own right and illustrate the richness of the WIMP paradigm. 
                        more » 
                        « less   
                    
                            
                            Is a Miracle-less WIMP Ruled out?
                        
                    
    
            We examine a real electroweak triplet scalar field as dark matter,abandoning the requirement that its relic abundance is determinedthrough freeze out in a standard cosmological history (a situation whichwe refer to as `miracle-less WIMP’). We extract the bounds on such aparticle from collider searches, searches for direct scattering withterrestrial targets, and searches for the indirect products ofannihilation. Each type of search provides complementary information,and each is most effective in a different region of parameter space. LHCsearches tend to be highly dependent on the mass of the SU(2) chargedpartner state, and are effective for very large or very tiny masssplitting between it and the neutral dark matter component. Directsearches are very effective at bounding the Higgs portal coupling, butineffective once it falls below \lambda_{\text{eff}} \lesssim 10^{-3} λ eff ≲ 10 − 3 .Indirect searches suffer from large astrophysical uncertainties due tothe backgrounds and J J -factors,but do provide key information for \sim ∼ 100 GeV to TeV masses. Synthesizing the allowed parameter space, thisexample of WIMP dark matter remains viable, but only in miracle-lessregimes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1915005
- PAR ID:
- 10346109
- Date Published:
- Journal Name:
- SciPost Physics
- Volume:
- 11
- Issue:
- 2
- ISSN:
- 2542-4653
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Galaxy clusters are promising targets for indirect detection of dark matter thanks to the large dark matter content. Using 14 years ofFermi-LAT data from seven nearby galaxy clusters, we obtain constraints on the lifetime of decaying very heavy dark matter particles with masses ranging from 103GeV to 1016GeV. We consider a variety of decaying channels and calculate prompt gamma rays and electrons/positrons from the dark matter. Furthermore, we take into account electromagnetic cascades induced by the primary gamma rays and electrons/positrons, and search for the resulting gamma-ray signals from the directions of the galaxy clusters. We adopt a Navarro-Frenk-White profile of the dark matter halos, and use the profile likelihood method to set lower limits on the dark matter lifetime at a 95% confidence level. Our results are competitive with those obtained through other gamma-ray observations of galaxy clusters and provide complementary constraints to existing indirect searches for decaying very heavy dark matter.more » « less
- 
            While much supersymmetric weakly interacting massive particle (WIMP) parameter space has been ruled out, one remaining important candidate is Higgsino dark matter. The Higgsino can naturally realize the “inelastic dark matter” scenario, where the scattering off a nucleus occurs between two nearly-degenerate states, making it invisible to WIMP direct detection experiments if the splitting is too large to be excited. It was realized that a “luminous dark matter” detection process, where the Higgsino upscatters in the Earth and subsequently decays into a photon in a large neutrino detector, offers the best sensitivity to such a scenario. We consider the possibility of adding a large volume of a heavy element, such as Pb or U, around the detector. We also consider the presence of U and Th in the Earth itself, and the effect of an enhanced high-velocity tail of the dark matter distribution due to the presence of the Large Magellanic Cloud. These effects can significantly improve the sensitivity of detectors such as JUNO, , KamLAND, and Borexino, potentially making it possible in the future to cover much of the remaining parameter space for this classic supersymmetric WIMP dark matter. Published by the American Physical Society2025more » « less
- 
            A bstract We study a renormalizable model of Dirac fermion dark matter (DM) that communicates with the Standard Model (SM) through a pair of mediators — one scalar, one fermion — in the representation ( 6 , 1 , $$ \frac{4}{3} $$ 4 3 ) of the SM gauge group SU(3) c × SU(2) L × U(1) Y . While such assignments preclude direct coupling of the dark matter to the Standard Model at tree level, we examine the many effective operators generated at one-loop order when the mediators are heavy, and find that they are often phenomenologically relevant. We reinterpret dijet and pair-produced resonance and jets + $$ {E}_{\mathrm{T}}^{\mathrm{miss}} $$ E T miss searches at the Large Hadron Collider (LHC) in order to constrain the mediator sector, and we examine an array of DM constraints ranging from the observed relic density Ω χ $$ {h}_{\mathrm{Planck}}^2 $$ h Planck 2 to indirect and direct searches for dark matter. Tree-level annihilation, available for DM masses starting at the TeV scale, is required in order to produce Ω χ $$ {h}_{\mathrm{Planck}}^2 $$ h Planck 2 through freeze-out, but loops — led by the dimension-five DM magnetic dipole moment — are nonetheless able to produce signals large enough to be constrained, particularly by the XENON1T experiment. In some benchmarks, we find a fair amount of parameter space left open by experiment and compatible with freeze-out. In other scenarios, however, the open space is quite small, suggesting a need for further model-building and/or non-standard cosmologies.more » « less
- 
            Abstract TheFermiLarge Area Telescope (Fermi-LAT) has been widely used to search for Weakly Interacting Massive Particle (WIMP) dark matter signals due to its unparalleled sensitivity in the GeV energy band. The leading constraints for WIMP byFermi-LAT are obtained from the analyses of dwarf spheroidal galaxies within the Local Group, which are compelling targets for dark matter searches due to their relatively low astrophysical backgrounds and high dark matter content. In the meantime, the search for heavy dark matter with masses above TeV remains a compelling and relatively unexplored frontier. In this study, we utilize 14-yearFermi-LAT data to search for dark matter annihilation and decay signals in 8 classical dwarf spheroidal galaxies within the Local Group. We consider secondary emission caused by electromagnetic cascades of prompt gamma rays and electrons/positrons from dark matter, which enables us to extend the search withFermi-LAT to heavier dark matter cases. We also update the dark matter subhalo model with informative priors respecting the fact that they reside in subhalos of our Milky Way halo aiming to enhance the robustness of our results. We place constraints on dark matter annihilation cross section and decay lifetime for dark matter masses ranging from 103GeV to 1011GeV, where our limits are more stringent than those obtained by many other high-energy gamma-ray instruments.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    