skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distinctive signals of frustrated dark matter
A bstract We study a renormalizable model of Dirac fermion dark matter (DM) that communicates with the Standard Model (SM) through a pair of mediators — one scalar, one fermion — in the representation ( 6 , 1 , $$ \frac{4}{3} $$ 4 3 ) of the SM gauge group SU(3) c × SU(2) L × U(1) Y . While such assignments preclude direct coupling of the dark matter to the Standard Model at tree level, we examine the many effective operators generated at one-loop order when the mediators are heavy, and find that they are often phenomenologically relevant. We reinterpret dijet and pair-produced resonance and jets + $$ {E}_{\mathrm{T}}^{\mathrm{miss}} $$ E T miss searches at the Large Hadron Collider (LHC) in order to constrain the mediator sector, and we examine an array of DM constraints ranging from the observed relic density Ω χ $$ {h}_{\mathrm{Planck}}^2 $$ h Planck 2 to indirect and direct searches for dark matter. Tree-level annihilation, available for DM masses starting at the TeV scale, is required in order to produce Ω χ $$ {h}_{\mathrm{Planck}}^2 $$ h Planck 2 through freeze-out, but loops — led by the dimension-five DM magnetic dipole moment — are nonetheless able to produce signals large enough to be constrained, particularly by the XENON1T experiment. In some benchmarks, we find a fair amount of parameter space left open by experiment and compatible with freeze-out. In other scenarios, however, the open space is quite small, suggesting a need for further model-building and/or non-standard cosmologies.  more » « less
Award ID(s):
1915005
PAR ID:
10463791
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
9
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We consider higher-dimensional effective (EFT) operators consisting of fermion dark matter (DM) connecting to Standard Model (SM) leptons upto dimension six. Considering all operators together and assuming the DM to undergo thermal freeze-out, we find out relic density allowed parameter space in terms of DM mass ( m χ ) and New Physics (NP) scale (Λ) with one loop direct search constraints from XENON1T experiment. Allowed parameter space of the model is probed at the proposed International Linear Collider (ILC) via monophoton signal for both Dirac and Majorana cases, limited by the centre-of-mass energy $$ \sqrt{s} $$ s =1 TeV, where DM mass can be probed within $$ {m}_{\chi }<\frac{\sqrt{s}}{2} $$ m χ < s 2 for the pair production to occur and Λ > $$ \sqrt{s} $$ s for the validity of EFT framework. 
    more » « less
  2. We revisit the phenomenology of dark matter (DM) scenarios within radius-stabilized Randall-Sundrum models. Specifically, we consider models where the dark matter candidates are Standard Model (SM) singlets confined to the TeV-brane and interact with the SM via spin-2 and spin-0 gravitational Kaluza-Klein (KK) modes. We compute the thermal relic density of DM particles in these models by applying recent work showing that scattering amplitudes of massive spin-2 KK states involve an intricate cancellation between various diagrams. Considering the resulting DM abundance, collider searches, and the absence of a signal in direct DM detection experiments, we show that spin-2 KK portal DM models are highly constrained. In particular, we confirm that within the usual thermal freeze-out scenario, scalar dark matter models are essentially ruled out. In contrast, we show that fermion and vector dark matter models are viable in a region of parameter space in which dark matter annihilation through a KK graviton is resonant. Specifically, vector models are viable for dark matter masses ranging from 1.1 to 5.5 TeV for theories in which the scale of couplings of the KK modes is of order 40 TeV or lower. Fermion dark matter models are viable for a similar mass region, but only for KK coupling scales of order 20 TeV. In this work, we provide a complete description of the calculations needed to arrive at these results and, provide a discussion of new KK-graviton couplings needed for the computations, which have not previously been discussed in the literature. Here, we focus on models in which the radion is light, and the backreaction of the radion stabilization dynamics on the gravitational background can be neglected. The phenomenology of a model with a heavy radion and the consideration of the effects of the radion stabilization dynamics on the DM abundance will be addressed in forthcoming work. Published by the American Physical Society2025 
    more » « less
  3. null (Ed.)
    ABSTRACT We investigate the redshift evolution of the intrinsic alignments (IAs) of galaxies in the MassiveBlackII (MBII) simulation. We select galaxy samples above fixed subhalo mass cuts ($$M_h\gt 10^{11,12,13}\,\mathrm{M}_{\odot }\, h^{-1}$$) at z = 0.6 and trace their progenitors to z = 3 along their merger trees. Dark matter components of z = 0.6 galaxies are more spherical than their progenitors while stellar matter components tend to be less spherical than their progenitors. The distribution of the galaxy–subhalo misalignment angle peaks at ∼10 deg with a mild increase with time. The evolution of the ellipticity–direction (ED) correlation amplitude ω(r) of galaxies (which quantifies the tendency of galaxies to preferentially point towards surrounding matter overdensities) is governed by the evolution in the alignment of underlying dark matter (DM) subhaloes to the matter density of field, as well as the alignment between galaxies and their DM subhaloes. At scales $$\sim 1~\mathrm{Mpc}\, h^{-1}$$, the alignment between DM subhaloes and matter overdensity gets suppressed with time, whereas the alignment between galaxies and DM subhaloes is enhanced. These competing tendencies lead to a complex redshift evolution of ω(r) for galaxies at $$\sim 1~\mathrm{Mpc}\, h^{-1}$$. At scales $$\gt 1~\mathrm{Mpc}\, h^{-1}$$, alignment between DM subhaloes and matter overdensity does not evolve significantly; the evolution of the galaxy–subhalo misalignment therefore leads to an increase in ω(r) for galaxies by a factor of ∼4 from z = 3 to 0.6 at scales $$\gt 1~\mathrm{Mpc}\, h^{-1}$$. The balance between competing physical effects is scale dependent, leading to different conclusions at much smaller scales ($$\sim 0.1~\mathrm{Mpc}\, h^{-1}$$). 
    more » « less
  4. We investigate the influence of the reheating temperature of the visible sector on the freeze-in dark matter (DM) benchmark model for direct detection experiments, where DM production is mediated by an ultralight dark photon. Here, we consider a new regime for this benchmark: we take the initial temperature of the thermal Standard Model (SM) bath to be below the DM mass. The production rate from the SM bath is drastically reduced due to Boltzmann suppression, necessitating a significant increase in the portal coupling between DM and the SM to match the observed relic DM abundance. This enhancement in coupling strength increases the predicted DM-electron scattering cross section, making freeze-in DM more accessible to current direct detection experiments. Published by the American Physical Society2025 
    more » « less
  5. A bstract We explore the possibility that dark matter is a pair of vector-like fermionic SU(2) L doublets and propose a novel mechanism of dark matter production that proceeds through the confinement of the weak sector of the Standard Model. This confinement phase causes the Standard Model doublets and dark matter to confine into pions. The dark pions freeze-out before the weak sector deconfines and generate a relic abundance of dark matter. We solve the Boltzmann equations for this scenario to determine the scale of confinement and constituent dark matter mass required to produce the observed relic density. We determine which regions of this parameter space evade direct detection, collider bounds, and successfully produce the observed relic density of dark matter. For a TeV scale pair of vector-like fermionic SU(2) L doublets, we find the weak confinement scale to be ∼ 700 TeV. 
    more » « less