skip to main content


Title: Is a Miracle-less WIMP Ruled out?
We examine a real electroweak triplet scalar field as dark matter,abandoning the requirement that its relic abundance is determinedthrough freeze out in a standard cosmological history (a situation whichwe refer to as `miracle-less WIMP’). We extract the bounds on such aparticle from collider searches, searches for direct scattering withterrestrial targets, and searches for the indirect products ofannihilation. Each type of search provides complementary information,and each is most effective in a different region of parameter space. LHCsearches tend to be highly dependent on the mass of the SU(2) chargedpartner state, and are effective for very large or very tiny masssplitting between it and the neutral dark matter component. Directsearches are very effective at bounding the Higgs portal coupling, butineffective once it falls below \lambda_{\text{eff}} \lesssim 10^{-3} λ eff ≲ 10 − 3 .Indirect searches suffer from large astrophysical uncertainties due tothe backgrounds and J J -factors,but do provide key information for \sim ∼ 100 GeV to TeV masses. Synthesizing the allowed parameter space, thisexample of WIMP dark matter remains viable, but only in miracle-lessregimes.  more » « less
Award ID(s):
1915005
NSF-PAR ID:
10346109
Author(s) / Creator(s):
;
Date Published:
Journal Name:
SciPost Physics
Volume:
11
Issue:
2
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We study a renormalizable model of Dirac fermion dark matter (DM) that communicates with the Standard Model (SM) through a pair of mediators — one scalar, one fermion — in the representation ( 6 , 1 , $$ \frac{4}{3} $$ 4 3 ) of the SM gauge group SU(3) c × SU(2) L × U(1) Y . While such assignments preclude direct coupling of the dark matter to the Standard Model at tree level, we examine the many effective operators generated at one-loop order when the mediators are heavy, and find that they are often phenomenologically relevant. We reinterpret dijet and pair-produced resonance and jets + $$ {E}_{\mathrm{T}}^{\mathrm{miss}} $$ E T miss searches at the Large Hadron Collider (LHC) in order to constrain the mediator sector, and we examine an array of DM constraints ranging from the observed relic density Ω χ $$ {h}_{\mathrm{Planck}}^2 $$ h Planck 2 to indirect and direct searches for dark matter. Tree-level annihilation, available for DM masses starting at the TeV scale, is required in order to produce Ω χ $$ {h}_{\mathrm{Planck}}^2 $$ h Planck 2 through freeze-out, but loops — led by the dimension-five DM magnetic dipole moment — are nonetheless able to produce signals large enough to be constrained, particularly by the XENON1T experiment. In some benchmarks, we find a fair amount of parameter space left open by experiment and compatible with freeze-out. In other scenarios, however, the open space is quite small, suggesting a need for further model-building and/or non-standard cosmologies. 
    more » « less
  2. Abstract Any dark matter spikes surrounding black holes in our Galaxy are sites of significant dark matter annihilation, leading to a potentially detectable neutrino signal. In this paper we examine 10 - 10 5 M ⊙ black holes associated with dark matter spikes that formed in early minihalos and still exist in our Milky Way Galaxy today, in light of neutrino data from the ANTARES [1] and IceCube [2] detectors. In various regions of the sky, we determine the minimum distance away from the solar system that a dark matter spike must be in order to have not been detected as a neutrino point source for a variety of representative dark matter annihilation channels. Given these constraints on the distribution of dark matter spikes in the Galaxy, we place significant limits on the formation of the first generation of stars in early minihalos — stronger than previous limits from gamma-ray searches in Fermi Gamma-Ray Space Telescope data. The larger black holes considered in this paper may arise as the remnants of Dark Stars after the dark matter fuel is exhausted; thus neutrino observations may be used to constrain the properties of Dark Stars. The limits are particularly strong for heavier WIMPs. For WIMP masses ∼ 5TeV, we show that ≲ 10 % of minihalos can host first stars that collapse into BHs larger than 10 3 M ⊙ . 
    more » « less
  3. ABSTRACT

    We use FIRE-2 zoom cosmological simulations of Milky Way size Galaxy haloes to calculate astrophysical J-factors for dark matter annihilation and indirect detection studies. In addition to velocity-independent (s-wave) annihilation cross-sections 〈σv〉, we also calculate effective J-factors for velocity-dependent models, where the annihilation cross-section is either p-wave (∝ v2/c2) or d-wave (∝ v4/c4). We use 12 pairs of simulations, each run with dark matter-only (DMO) physics and FIRE-2 physics. We observe FIRE runs produce central dark matter velocity dispersions that are systematically larger than in DMO runs by factors of ∼2.5–4. They also have a larger range of central (∼400 pc) dark matter densities than the DMO runs (ρFIRE/ρDMO ≃ 0.5–3) owing to the competing effects of baryonic contraction and feedback. At 3 deg from the Galactic Centre, FIRE J-factors are 3–60 (p-wave) and 10–500 (d-wave) times higher than in the DMO runs. The change in s-wave signal at 3 deg is more modest and can be higher or lower (∼0.3–7), though the shape of the emission profile is flatter (less peaked towards the Galactic Centre) and more circular on the sky in FIRE runs. Our results for s-wave are broadly consistent with the range of assumptions in most indirect detection studies. We observe p-wave J-factors that are significantly enhanced compared to most past estimates. We find that thermal models with p-wave annihilation may be within range of detection in the near future.

     
    more » « less
  4. A bstract Hidden sectors are ubiquitous in supergravity theories, in strings and in branes. Well motivated models such as the Stueckelberg hidden sector model could provide a candidate for dark matter. In such models, the hidden sector communicates with the visible sector via the exchange of a dark photon (dark Z ′) while dark matter is constituted of Dirac fermions in the hidden sector. Using data from collider searches and precision measurements of SM processes as well as the most recent limits from dark matter direct and indirect detection experiments, we perform a comprehensive scan over a wide range of the Z ′ mass and set exclusion bounds on the parameter space from sub-GeV to several TeV. We then discuss the discovery potential of an $$ \mathcal{O} $$ O (TeV) scale Z ′ at HL-LHC and the ability of future forward detectors to probe very weakly interacting sub-GeV Z ′ bosons. Our analysis shows that the parameter space in which a Z ′ can decay to hidden sector dark matter is severely constrained whereas limits become much weaker for a Z ′ with no dark decays. The analysis also favors a self-thermalized dark sector which is necessary to satisfy the dark matter relic density. 
    more » « less
  5. Abstract For decades, searches for electroweak-scale dark matter (DM) have been performed without a definitive detection. This lack of success may hint that DM searches have focused on the wrong mass range. A proposed candidate beyond the canonical parameter space is ultraheavy DM (UHDM). In this work, we consider indirect UHDM annihilation searches for masses between 30 TeV and 30 PeV—extending well beyond the unitarity limit at ∼100 TeV—and discuss the basic requirements for DM models in this regime. We explore the feasibility of detecting the annihilation signature, and the expected reach for UHDM with current and future very-high-energy (VHE; >100 GeV) γ -ray observatories. Specifically, we focus on three reference instruments: two Imaging Atmospheric Cherenkov Telescope arrays, modeled on VERITAS and CTA-North, and one extended air shower array, motivated by HAWC. With reasonable assumptions on the instrument response functions and background rate, we find a set of UHDM parameters (mass and cross section) for which a γ -ray signature can be detected by the aforementioned observatories. We further compute the expected upper limits for each experiment. With realistic exposure times, the three instruments can probe DM across a wide mass range. At the lower end, it can still have a point-like cross section, while at higher masses the DM could have a geometric cross section, indicative of compositeness. 
    more » « less