Accessing high-quality video content can be challenging due to insufficient and unstable network bandwidth. Recent advances in neural enhancement have shown promising results in improving the quality of degraded videos through deep learning. Neural-Enhanced Streaming (NES) incorporates this new approach into video streaming, allowing users to download low-quality video segments and then enhance them to obtain high-quality content without violating the playback of the video stream. We introduce BONES, an NES control algorithm that jointly manages the network and computational resources to maximize the quality of experience (QoE) of the user. BONES formulates NES as a Lyapunov optimization problem and solves it in an online manner with near-optimal performance, making it the first NES algorithm to provide a theoretical performance guarantee. Comprehensive experimental results indicate that BONES increases QoE by 5% to 20% over state-of-the-art algorithms with minimal overhead. Our code is available at https://github.com/UMass-LIDS/bones.
more »
« less
VOXEL: cross-layer optimization for video streaming with imperfect transmission
Delivering videos under less-than-ideal network conditions without compromising end-users' quality of experiences is a hard problem. Virtually all prior work follow a piecemeal approach---either "tweaking" the fully reliable transport layer or making the client "smarter." We propose VOXEL, a cross-layer optimization system for video streaming. We use VOXEL to demonstrate how to combine application-provided "insights" with a partially reliable protocol for optimizing video streaming. To this end, we present a novel ABR algorithm that explicitly trades off losses for improving end-users' video-watching experiences. VOXEL is fully compatible with DASH, and backward-compatible with VOXEL-unaware servers and clients. In our experiments emulating a wide range of network conditions, VOXEL outperforms the state-of-the-art: We stream videos in the 90th-percentile with up to 97% less rebuffering than the state-of-the-art without sacrificing visual fidelity. We also demonstrate the benefits of VOXEL for small-buffer regimes like the emerging use case of low-latency and live streaming. In a survey of 54 real users, 84% of the participants indicated that they prefer videos streamed using VOXEL compared to the state-of-the-art.
more »
« less
- PAR ID:
- 10346185
- Date Published:
- Journal Name:
- International Conference on emerging Networking EXperiments and Technologies (CoNEXT'21)
- Page Range / eLocation ID:
- 359 to 374
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Adaptive bitrate (ABR) algorithms play a critical role in video streaming by making optimal bitrate decisions in dynamically changing network conditions to provide a high quality of experience (QoE) for users. However, most existing ABRs suffer from limitations such as predefined rules and incorrect assumptions about streaming parameters. They often prioritize higher bitrates and ignore the corresponding energy footprint, resulting in increased energy consumption, especially for mobile device users. Additionally, most ABR algorithms do not consider perceived quality, leading to suboptimal user experience. This article proposes a novel ABR scheme called GreenABR+, which utilizes deep reinforcement learning to optimize energy consumption during video streaming while maintaining high user QoE. Unlike existing rule-based ABR algorithms, GreenABR+ makes no assumptions about video settings or the streaming environment. GreenABR+ model works on different video representation sets and can adapt to dynamically changing conditions in a wide range of network scenarios. Our experiments demonstrate that GreenABR+ outperforms state-of-the-art ABR algorithms by saving up to 57% in streaming energy consumption and 57% in data consumption while providing up to 25% more perceptual QoE due to up to 87% less rebuffering time and near-zero capacity violations. The generalization and dynamic adaptability make GreenABR+ a flexible solution for energy-efficient ABR optimization.more » « less
-
Adaptive bitrate (ABR) algorithms aim to make optimal bitrate decisions in dynamically changing network conditions to ensure a high quality of experience (QoE) for the users during video streaming. However, most of the existing ABRs share the limitations of predefined rules and incorrect assumptions about streaming parameters. They also come short to consider the perceived quality in their QoE model, target higher bitrates regardless, and ignore the corresponding energy consumption. This joint approach results in additional energy consumption and becomes a burden, especially for mobile device users. This paper proposes GreenABR, a new deep reinforcement learning-based ABR scheme that optimizes the energy consumption during video streaming without sacrificing the user QoE. GreenABR employs a standard perceived quality metric, VMAF, and real power measurements collected through a streaming application. GreenABR's deep reinforcement learning model makes no assumptions about the streaming environment and learns how to adapt to the dynamically changing conditions in a wide range of real network scenarios. GreenABR outperforms the existing state-of-the-art ABR algorithms by saving up to 57% in streaming energy consumption and 60% in data consumption while achieving up to 22% more perceptual QoE due to up to 84% less rebuffering time and near-zero capacity violations.more » « less
-
Bulterman_Dick; Kankanhalli_Mohan; Muehlhaueser_Max; Persia_Fabio; Sheu_Philip; Tsai_Jeffrey (Ed.)The emergence of 360-video streaming systems has brought about new possibilities for immersive video experiences while requiring significantly higher bandwidth than traditional 2D video streaming. Viewport prediction is used to address this problem, but interesting storylines outside the viewport are ignored. To address this limitation, we present SAVG360, a novel viewport guidance system that utilizes global content information available on the server side to enhance streaming with the best saliency-captured storyline of 360-videos. The saliency analysis is performed offline on the media server with powerful GPU, and the saliency-aware guidance information is encoded and shared with clients through the Saliency-aware Guidance Descriptor. This enables the system to proactively guide users to switch between storylines of the video and allow users to follow or break guided storylines through a novel user interface. Additionally, we present a viewing mode prediction algorithms to enhance video delivery in SAVG360. Evaluation of user viewport traces in 360-videos demonstrate that SAVG360 outperforms existing tiled streaming solutions in terms of overall viewport prediction accuracy and the ability to stream high-quality 360 videos under bandwidth constraints. Furthermore, a user study highlights the advantages of our proactive guidance approach over predicting and streaming of where users look.more » « less
-
Adaptive bitrate (ABR) algorithms aim to make optimal bitrate de- cisions in dynamically changing network conditions to ensure a high quality of experience (QoE) for the users during video stream- ing. However, most of the existing ABRs share the limitations of predefined rules and incorrect assumptions about streaming pa- rameters. They also come short to consider the perceived quality in their QoE model, target higher bitrates regardless, and ignore the corresponding energy consumption. This joint approach results in additional energy consumption and becomes a burden, especially for mobile device users. This paper proposes GreenABR, a new deep reinforcement learning-based ABR scheme that optimizes the energy consumption during video streaming without sacrificing the user QoE. GreenABR employs a standard perceived quality metric, VMAF, and real power measurements collected through a streaming application. GreenABR’s deep reinforcement learning model makes no assumptions about the streaming environment and learns how to adapt to the dynamically changing conditions in a wide range of real network scenarios. GreenABR outperforms the existing state-of-the-art ABR algorithms by saving up to 57% in streaming energy consumption and 60% in data consumption while achieving up to 22% more perceptual QoE due to up to 84% less rebuffering time and near-zero capacity violations.more » « less
An official website of the United States government

