skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum simulation in the semi-classical regime
Solving the time-dependent Schrödinger equation is an important application area for quantum algorithms. We consider Schrödinger's equation in the semi-classical regime. Here the solutions exhibit strong multiple-scale behavior due to a small parameter ℏ , in the sense that the dynamics of the quantum states and the induced observables can occur on different spatial and temporal scales. Such a Schrödinger equation finds many applications, including in Born-Oppenheimer molecular dynamics and Ehrenfest dynamics. This paper considers quantum analogues of pseudo-spectral (PS) methods on classical computers. Estimates on the gate counts in terms of ℏ and the precision ε are obtained. It is found that the number of required qubits, m , scales only logarithmically with respect to ℏ . When the solution has bounded derivatives up to order ℓ , the symmetric Trotting method has gate complexity O ( ( ε ℏ ) − 1 2 p o l y l o g ( ε − 3 2 ℓ ℏ − 1 − 1 2 ℓ ) ) , provided that the diagonal unitary operators in the pseudo-spectral methods can be implemented with p o l y ( m ) operations. When physical observables are the desired outcomes, however, the step size in the time integration can be chosen independently of ℏ . The gate complexity in this case is reduced to O ( ε − 1 2 p o l y l o g ( ε − 3 2 ℓ ℏ − 1 ) ) , with ℓ again indicating the smoothness of the solution.  more » « less
Award ID(s):
2111221
PAR ID:
10346227
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Quantum
Volume:
6
ISSN:
2521-327X
Page Range / eLocation ID:
739
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantum computers can produce a quantum encoding of the solution of a system of differential equations exponentially faster than a classical algorithm can produce an explicit description. However, while high-precision quantum algorithms for linear ordinary differential equations are well established, the best previous quantum algorithms for linear partial differential equations (PDEs) have complexity p o l y ( 1 / ϵ ) , where ϵ is the error tolerance. By developing quantum algorithms based on adaptive-order finite difference methods and spectral methods, we improve the complexity of quantum algorithms for linear PDEs to be p o l y ( d , log ⁡ ( 1 / ϵ ) ) , where d is the spatial dimension. Our algorithms apply high-precision quantum linear system algorithms to systems whose condition numbers and approximation errors we bound. We develop a finite difference algorithm for the Poisson equation and a spectral algorithm for more general second-order elliptic equations. 
    more » « less
  2. The difficulty of simulating quantum dynamics depends on the norm of the Hamiltonian. When the Hamiltonian varies with time, the simulation complexity should only depend on this quantity instantaneously. We develop quantum simulation algorithms that exploit this intuition. For sparse Hamiltonian simulation, the gate complexity scales with the L 1 norm ∫ 0 t d τ ‖ H ( τ ) ‖ max , whereas the best previous results scale with t max τ ∈ [ 0 , t ] ‖ H ( τ ) ‖ max . We also show analogous results for Hamiltonians that are linear combinations of unitaries. Our approaches thus provide an improvement over previous simulation algorithms that can be substantial when the Hamiltonian varies significantly. We introduce two new techniques: a classical sampler of time-dependent Hamiltonians and a rescaling principle for the Schrödinger equation. The rescaled Dyson-series algorithm is nearly optimal with respect to all parameters of interest, whereas the sampling-based approach is easier to realize for near-term simulation. These algorithms could potentially be applied to semi-classical simulations of scattering processes in quantum chemistry. 
    more » « less
  3. Kiltz, E. (Ed.)
    The classical (parallel) black pebbling game is a useful abstraction which allows us to analyze the resources (space, space-time, cumulative space) necessary to evaluate a function f with a static data-dependency graph G. Of particular interest in the field of cryptography are data-independent memory-hard functions fG,H which are defined by a directed acyclic graph (DAG) G and a cryptographic hash function H. The pebbling complexity of the graph G characterizes the amortized cost of evaluating fG,H multiple times as well as the total cost to run a brute-force preimage attack over a fixed domain X, i.e., given y∈{0,1}∗ find x∈X such that fG,H(x)=y. While a classical attacker will need to evaluate the function fG,H at least m=|X| times a quantum attacker running Grover’s algorithm only requires O(m−−√) blackbox calls to a quantum circuit CG,H evaluating the function fG,H. Thus, to analyze the cost of a quantum attack it is crucial to understand the space-time cost (equivalently width times depth) of the quantum circuit CG,H. We first observe that a legal black pebbling strategy for the graph G does not necessarily imply the existence of a quantum circuit with comparable complexity—in contrast to the classical setting where any efficient pebbling strategy for G corresponds to an algorithm with comparable complexity for evaluating fG,H. Motivated by this observation we introduce a new parallel reversible pebbling game which captures additional restrictions imposed by the No-Deletion Theorem in Quantum Computing. We apply our new reversible pebbling game to analyze the reversible space-time complexity of several important graphs: Line Graphs, Argon2i-A, Argon2i-B, and DRSample. Specifically, (1) we show that a line graph of size N has reversible space-time complexity at most O(N^{1+2/√logN}). (2) We show that any (e, d)-reducible DAG has reversible space-time complexity at most O(Ne+dN2^d). In particular, this implies that the reversible space-time complexity of Argon2i-A and Argon2i-B are at most O(N^2 loglogN/√logN) and O(N^2/(log N)^{1/3}), respectively. (3) We show that the reversible space-time complexity of DRSample is at most O((N^2loglog N)/log N). We also study the cumulative pebbling cost of reversible pebblings extending a (non-reversible) pebbling attack of Alwen and Blocki on depth-reducible graphs. 
    more » « less
  4. Quantum simulation is a prominent application of quantum computers. While there is extensive previous work on simulating finite-dimensional systems, less is known about quantum algorithms for real-space dynamics. We conduct a systematic study of such algorithms. In particular, we show that the dynamics of a d -dimensional Schrödinger equation with η particles can be simulated with gate complexity O ~ ( η d F poly ( log ⁡ ( g ′ / ϵ ) ) ) , where ϵ is the discretization error, g ′ controls the higher-order derivatives of the wave function, and F measures the time-integrated strength of the potential. Compared to the best previous results, this exponentially improves the dependence on ϵ and g ′ from poly ( g ′ / ϵ ) to poly ( log ⁡ ( g ′ / ϵ ) ) and polynomially improves the dependence on T and d , while maintaining best known performance with respect to η . For the case of Coulomb interactions, we give an algorithm using η 3 ( d + η ) T poly ( log ⁡ ( η d T g ′ / ( Δ ϵ ) ) ) / Δ one- and two-qubit gates, and another using η 3 ( 4 d ) d / 2 T poly ( log ⁡ ( η d T g ′ / ( Δ ϵ ) ) ) / Δ one- and two-qubit gates and QRAM operations, where T is the evolution time and the parameter Δ regulates the unbounded Coulomb interaction. We give applications to several computational problems, including faster real-space simulation of quantum chemistry, rigorous analysis of discretization error for simulation of a uniform electron gas, and a quadratic improvement to a quantum algorithm for escaping saddle points in nonconvex optimization. 
    more » « less
  5. Abstract A fundamental question in wave turbulence theory is to understand how the wave kinetic equation describes the long-time dynamics of its associated nonlinear dispersive equation. Formal derivations in the physics literature, dating back to the work of Peierls in 1928, suggest that such a kinetic description should hold (for well-prepared random data) at a large kinetic time scale $$T_{\mathrm {kin}} \gg 1$$ and in a limiting regime where the size L of the domain goes to infinity and the strength $$\alpha $$ of the nonlinearity goes to $$0$$ (weak nonlinearity). For the cubic nonlinear Schrödinger equation, $$T_{\mathrm {kin}}=O\left (\alpha ^{-2}\right )$$ and $$\alpha $$ is related to the conserved mass $$\lambda $$ of the solution via $$\alpha =\lambda ^2 L^{-d}$$ . In this paper, we study the rigorous justification of this monumental statement and show that the answer seems to depend on the particular scaling law in which the $$(\alpha , L)$$ limit is taken, in a spirit similar to how the Boltzmann–Grad scaling law is imposed in the derivation of Boltzmann’s equation. In particular, there appear to be two favourable scaling laws: when $$\alpha $$ approaches $$0$$ like $$L^{-\varepsilon +}$$ or like $$L^{-1-\frac {\varepsilon }{2}+}$$ (for arbitrary small $$\varepsilon $$ ), we exhibit the wave kinetic equation up to time scales $$O(T_{\mathrm {kin}}L^{-\varepsilon })$$ , by showing that the relevant Feynman-diagram expansions converge absolutely (as a sum over paired trees). For the other scaling laws, we justify the onset of the kinetic description at time scales $$T_*\ll T_{\mathrm {kin}}$$ and identify specific interactions that become very large for times beyond $$T_*$$ . In particular, the relevant tree expansion diverges absolutely there. In light of those interactions, extending the kinetic description beyond $$T_*$$ toward $$T_{\mathrm {kin}}$$ for such scaling laws seems to require new methods and ideas. 
    more » « less