Opportunities to apply data mining techniques to analyze educational data and improve learning are increasing. A multitude of data are being produced by institutional technology, e-learning resources, and online and virtual courses. These data could be used by educators to analyze and understand the learning behaviors of students. The obtained data are raw data that must be analyzed, requiring educational data mining to predict useful information about students, such as academic performance, among other things. Many researchers have used traditional machine learning to predict the academic performance of students, and very little research has been conducted on the architecture of convolutional neural networks (CNNs) in the context of the pedagogical domain. We built a hybrid 2D CNN model by combining two different 2D CNN models to predict academic performance. Our sample comprised 1D data, so we transformed it to 2D image data to test the performance of our hybrid model. We compared the performance of our model with that of different traditional baseline models. Our model outperformed baseline models, such as k-nearest neighbor, naïve Bayes, decision trees, and logistic regression, in terms of accuracy.
more »
« less
Hybrid Feature Extraction Model to Categorize Student Attention Pattern and Its Relationship with Learning
The increase of instructional technology, e-learning resources, and online courses has created opportunities for data mining and learning analytics in the pedagogical domain. A large amount of data is obtained from this domain that can be analyzed and interpreted so that educators can understand students’ attention. In a classroom where students have their own computers in front of them, it is important for instructors to understand whether students are paying attention. We collected on- and off-task data to analyze the attention behaviors of students. Educational data mining extracts hidden information from educational records, and we are using it to classify student attention patterns. A hybrid method is used to combine various techniques like classifications, regressions, or feature extraction. In our work, we combined two feature extraction techniques: principal component analysis and linear discriminant analysis. Extracted features are used by a linear and kernel support vector machine (SVM) to classify attention patterns. Classification results are compared with linear and kernel SVM. Our hybrid method achieved the best results in terms of accuracy, precision, recall, F1, and kappa. Also, we correlated attention with learning. Here, learning corresponds to tests and a final course grade. For determining the correlation between grades and attention, Pearson’s correlation coefficient and p-value were used.
more »
« less
- Award ID(s):
- 2047625
- PAR ID:
- 10346238
- Date Published:
- Journal Name:
- Electronics
- Volume:
- 11
- Issue:
- 9
- ISSN:
- 2079-9292
- Page Range / eLocation ID:
- 1476
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Remanufacturing sites often receive products with different brands, models, conditions, and quality levels. Proper sorting and classification of the waste stream is a primary step in efficiently recovering and handling used products. The correct classification is particularly crucial in future electronic waste (e-waste) management sites equipped with Artificial Intelligence (AI) and robotic technologies. Robots should be enabled with proper algorithms to recognize and classify products with different features and prepare them for assembly and disassembly tasks. In this study, two categories of Machine Learning (ML) and Deep Learning (DL) techniques are used to classify consumer electronics. ML models include Naïve Bayes with Bernoulli, Gaussian, Multinomial distributions, and Support Vector Machine (SVM) algorithms with four kernels of Linear, Radial Basis Function (RBF), Polynomial, and Sigmoid. While DL models include VGG-16, GoogLeNet, Inception-v3, Inception-v4, and ResNet-50. The above-mentioned models are used to classify three laptop brands, including Apple, HP, and ThinkPad. First the Edge Histogram Descriptor (EHD) and Scale Invariant Feature Transform (SIFT) are used to extract features as inputs to ML models for classification. DL models use laptop images without pre-processing on feature extraction. The trained models are slightly overfitting due to the limited dataset and complexity of model parameters. Despite slight overfitting, the models can identify each brand. The findings prove that DL models outperform them of ML. Among DL models, GoogLeNet has the highest performance in identifying the laptop brands.more » « less
-
null (Ed.)Remanufacturing sites often receive products with different brands, models, conditions, and quality levels. Proper sorting and classification of the waste stream is a primary step in efficiently recovering and handling used products. The correct classification is particularly crucial in future electronic waste (e-waste) management sites equipped with Artificial Intelligence (AI) and robotic technologies. Robots should be enabled with proper algorithms to recognize and classify products with different features and prepare them for assembly and disassembly tasks. In this study, two categories of Machine Learning (ML) and Deep Learning (DL) techniques are used to classify consumer electronics. ML models include Naïve Bayes with Bernoulli, Gaussian, Multinomial distributions, and Support Vector Machine (SVM) algorithms with four kernels of Linear, Radial Basis Function (RBF), Polynomial, and Sigmoid. While DL models include VGG16, GoogLeNet, Inception-v3, Inception-v4, and ResNet-50. The above-mentioned models are used to classify three laptop brands, including Apple, HP, and ThinkPad. First, the Edge Histogram Descriptor (EHD) and Scale Invariant Feature Transform (SIFT) are used to extract features as inputs to ML models for classification. DL models use laptop images without pre-processing on feature extraction. The trained models are slightly overfitting due to the limited dataset and complexity of model parameters. Despite slight overfitting, the models can identify each brand. The findings prove that DL models outperform ML. Among DL models, GoogLeNet has the highest performance in identifying the laptop brands.more » « less
-
Although Support Vector Machines (SVM) are widely used for classifying human motion patterns, their application in the automatic recognition of dynamic and static activities of daily life in the healthy older adults is limited. Using a body mounted wireless inertial measurement unit (IMU), this paper explores the use of SVM approach for classifying dynamic (walking) and static (sitting, standing and lying) activities of the older adults. Specifically, data formatting and feature extraction methods associated with IMU signals are discussed. To evaluate the performance of the SVM algorithm, the effects of two parameters involved in SVM algorithm—the soft margin constant C and the kernel function parameter γ—are investigated. The changes associated with adding white-noise and pink-noise on these two parameters along with adding different sources of movement variations (i.e., localized muscle fatigue and mixed activities) are further discussed. The results indicate that the SVM algorithm is capable of keeping high overall accuracy by adjusting the two parameters for dynamic as well as static activities, and may be applied as a tool for automatically identifying dynamic and static activities of daily life in the older adults.more » « less
-
Classification and Feature Extraction for Hydraulic Structures Data Using Advanced CNN ArchitecturesAn efficient feature selection method can significantly boost results in classification problems. Despite ongoing improvement, hand-designed methods often fail to extract features capturing high- and mid-level representations at effective levels. In machine learning (Deep Learning), recent developments have improved upon these hand-designed methods by utilizing automatic extraction of features. Specifically, Convolutional Neural Networks (CNNs) are a highly successful technique for image classification which can automatically extract features, with ongoing learning and classification of these features. The purpose of this study is to detect hydraulic structures (i.e., bridges and culverts) that are important to overland flow modeling and environmental applications. The dataset used in this work is a relatively small dataset derived from 1-m LiDAR-derived Digital Elevation Models (DEMs) and National Agriculture Imagery Program (NAIP) aerial imagery. The classes for our experiment consist of two groups: the ones with a bridge/culvert being present are considered "True", and those without a bridge/culvert are considered "False". In this paper, we use advanced CNN techniques, including Siamese Neural Networks (SNNs), Capsule Networks (CapsNets), and Graph Convolutional Networks (GCNs), to classify samples with similar topographic and spectral characteristics, an objective which is challenging utilizing traditional machine learning techniques, such as Support Vector Machine (SVM), Gaussian Classifier (GC), and Gaussian Mixture Model (GMM). The advanced CNN-based approaches combined with data pre-processing techniques (e.g., data augmenting) produced superior results. These approaches provide efficient, cost-effective, and innovative solutions to the identification of hydraulic structures.more » « less
An official website of the United States government

