skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep Learning and Machine Learning Techniques to Classify Electrical and Electronic Equipment
Abstract Remanufacturing sites often receive products with different brands, models, conditions, and quality levels. Proper sorting and classification of the waste stream is a primary step in efficiently recovering and handling used products. The correct classification is particularly crucial in future electronic waste (e-waste) management sites equipped with Artificial Intelligence (AI) and robotic technologies. Robots should be enabled with proper algorithms to recognize and classify products with different features and prepare them for assembly and disassembly tasks. In this study, two categories of Machine Learning (ML) and Deep Learning (DL) techniques are used to classify consumer electronics. ML models include Naïve Bayes with Bernoulli, Gaussian, Multinomial distributions, and Support Vector Machine (SVM) algorithms with four kernels of Linear, Radial Basis Function (RBF), Polynomial, and Sigmoid. While DL models include VGG-16, GoogLeNet, Inception-v3, Inception-v4, and ResNet-50. The above-mentioned models are used to classify three laptop brands, including Apple, HP, and ThinkPad. First the Edge Histogram Descriptor (EHD) and Scale Invariant Feature Transform (SIFT) are used to extract features as inputs to ML models for classification. DL models use laptop images without pre-processing on feature extraction. The trained models are slightly overfitting due to the limited dataset and complexity of model parameters. Despite slight overfitting, the models can identify each brand. The findings prove that DL models outperform them of ML. Among DL models, GoogLeNet has the highest performance in identifying the laptop brands.  more » « less
Award ID(s):
2026533 1928595
PAR ID:
10350397
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Remanufacturing sites often receive products with different brands, models, conditions, and quality levels. Proper sorting and classification of the waste stream is a primary step in efficiently recovering and handling used products. The correct classification is particularly crucial in future electronic waste (e-waste) management sites equipped with Artificial Intelligence (AI) and robotic technologies. Robots should be enabled with proper algorithms to recognize and classify products with different features and prepare them for assembly and disassembly tasks. In this study, two categories of Machine Learning (ML) and Deep Learning (DL) techniques are used to classify consumer electronics. ML models include Naïve Bayes with Bernoulli, Gaussian, Multinomial distributions, and Support Vector Machine (SVM) algorithms with four kernels of Linear, Radial Basis Function (RBF), Polynomial, and Sigmoid. While DL models include VGG16, GoogLeNet, Inception-v3, Inception-v4, and ResNet-50. The above-mentioned models are used to classify three laptop brands, including Apple, HP, and ThinkPad. First, the Edge Histogram Descriptor (EHD) and Scale Invariant Feature Transform (SIFT) are used to extract features as inputs to ML models for classification. DL models use laptop images without pre-processing on feature extraction. The trained models are slightly overfitting due to the limited dataset and complexity of model parameters. Despite slight overfitting, the models can identify each brand. The findings prove that DL models outperform ML. Among DL models, GoogLeNet has the highest performance in identifying the laptop brands. 
    more » « less
  2. Abstract The most common eye infection in people with diabetes is diabetic retinopathy (DR). It might cause blurred vision or even total blindness. Therefore, it is essential to promote early detection to prevent or alleviate the impact of DR. However, due to the possibility that symptoms may not be noticeable in the early stages of DR, it is difficult for doctors to identify them. Therefore, numerous predictive models based on machine learning (ML) and deep learning (DL) have been developed to determine all stages of DR. However, existing DR classification models cannot classify every DR stage or use a computationally heavy approach. Common metrics such as accuracy, F1 score, precision, recall, and AUC-ROC score are not reliable for assessing DR grading. This is because they do not account for two key factors: the severity of the discrepancy between the assigned and predicted grades and the ordered nature of the DR grading scale.  This research proposes computationally efficient ensemble methods for the classification of DR. These methods leverage pre-trained model weights, reducing training time and resource requirements. In addition, data augmentation techniques are used to address data limitations, improve features, and improve generalization. This combination offers a promising approach for accurate and robust DR grading. In particular, we take advantage of transfer learning using models trained on DR data and employ CLAHE for image enhancement and Gaussian blur for noise reduction. We propose a three-layer classifier that incorporates dropout and ReLU activation. This design aims to minimize overfitting while effectively extracting features and assigning DR grades. We prioritize the Quadratic Weighted Kappa (QWK) metric due to its sensitivity to label discrepancies, which is crucial for an accurate diagnosis of DR. This combined approach achieves state-of-the-art QWK scores (0.901, 0.967 and 0.944) in the Eyepacs, Aptos, and Messidor datasets. 
    more » « less
  3. The abundant post-earthquake data from the Canterbury, New Zealand (NZ) area is poised for use with machine learning (ML) to further advance our ability to better predict and understand the effects of liquefaction. Liquefaction manifestation is one of the identifiable effects of liquefaction, a nonlinear phenomenon that is still not well understood. ML algorithms are often termed as “black-box” models that have little to no explainability for the resultant predictions, making them difficult for use in practice. With the SHapley Additive exPlanations (SHAP) algorithm wrapper, mathematically backed explanations can be fit to the model to track input feature influences on the final prediction. In this paper, Random Forest (RF) is chosen as the ML model to be utilized as it is a powerful non-parametric classification model, then SHAP is applied to calculate explanations for the predictions at a global and local feature scale. The RF model hyperparameters are optimized with a two-step grid search and a five-fold cross-validation to avoid overfitting. The overall model accuracy is 71% over six ordinal categories predicting the Canterbury Earthquake Sequence measurements from 2010, 2011, and 2016. Insights from the SHAP application onto the RF model include the influences of PGA, GWT depths, and SBTs for each ordinal class prediction. This preliminary exploration using SHAP can pave the way for both reinforcing the performance of current ML models by comparing to previous knowledge and using it as a discovery tool for identifying which research areas are pertinent to unlocking more understanding of liquefaction mechanics. 
    more » « less
  4. Abstract An intelligent sensing framework using Machine Learning (ML) and Deep Learning (DL) architectures to precisely quantify dielectrophoretic force invoked on microparticles in a textile electrode-based DEP sensing device is reported. The prediction accuracy and generalization ability of the framework was validated using experimental results. Images of pearl chain alignment at varying input voltages were used to build deep regression models using modified ML and CNN architectures that can correlate pearl chain alignment patterns of Saccharomyces cerevisiae(yeast) cells and polystyrene microbeads to DEP force. Various ML models such as K-Nearest Neighbor, Support Vector Machine, Random Forest, Neural Networks, and Linear Regression along with DL models such as Convolutional Neural Network (CNN) architectures of AlexNet, ResNet-50, MobileNetV2, and GoogLeNet have been analyzed in order to build an effective regression framework to estimate the force induced on yeast cells and microbeads. The efficiencies of the models were evaluated using Mean Absolute Error, Mean Absolute Relative, Mean Squared Error, R-squared, and Root Mean Square Error (RMSE) as evaluation metrics. ResNet-50 with RMSPROP gave the best performance, with a validation RMSE of 0.0918 on yeast cells while AlexNet with ADAM optimizer gave the best performance, with a validation RMSE of 0.1745 on microbeads. This provides a baseline for further studies in the application of deep learning in DEP aided Lab-on-Chip devices. 
    more » « less
  5. Recently, using credit cards has been considered one of the essential things of our life due to its pros of being easy to use and flexible to pay. The critical impact of the increment of using credit cards is the occurrence of fraudulent transactions, which allow the illegal user to get money and free goods via unauthorized usage. Artificial Intelligence (AI) and Machine Learning (ML) have become effective techniques used in different applications to ensure cybersecurity. This paper proposes our fraud detection system called Man-Ensemble CCFD using an ensemble-learning model with two stages of classification and detection. Stage one, called ML-CCFD, utilizes ten machine learning (ML) algorithms to classify credit card transactions to class 1 as a fraudulent transaction or class 0 as a legitimate transaction. As a result, we compared their classification reports together, precisely precision, recall (sensitivity), and f1-score. Then, we selected the most accurate ML algorithms based on their classification performance and prediction accuracy. The second stage, known Ensemble-learning CCFD, is an ensemble model that applies the Man-Ensemble method on the most effective ML algorithms from stage one. The output of the second stage is to get the final prediction instead of using common types of ensemble learning, such as voting, stacking, boosting, and others. Our framework’s results showed the effectiveness and efficiency of our fraud detection system compared to using ML algorithms individually due to their weakness issues, such as errors, overfitting, bias, prediction accuracy, and even their robustness level. 
    more » « less