- Award ID(s):
- 1828010
- Publication Date:
- NSF-PAR ID:
- 10346355
- Journal Name:
- Proceedings of the Future Technologies Conference
- Volume:
- 360
- Page Range or eLocation-ID:
- 455–470
- Sponsoring Org:
- National Science Foundation
More Like this
-
This project was designed to address three major challenges faced by undergraduate engineering students (UES) and pre-service teachers (PSTs): 1) retention for UESs after the first year, and continued engagement when they reach more difficult concepts, 2) to prepare PSTs to teach engineering, which is a requirement in the Next Generation Science Standards as well as many state level standards of learning, and 3) to prepare both groups of students to communicate and collaborate in a multi-disciplinary context, which is a necessary skill in their future places of work. This project was implemented in three pairs of classes: 1) an introductory mechanical engineering class, fulfilling a general education requirement for information literacy and a foundations class in education, 2) fluid mechanics in mechanical engineering technology and a science methods class in education, and 3) mechanical engineering courses requiring programming (e.g., computational methods and robotics) with an educational technology class. All collaborations taught elementary level students (4th or 5th grade). For collaborations 1 and 2, the elementary students came to campus for a field trip where they toured engineering labs and participated in a one hour lesson taught by both the UESs and PSTs. In collaboration 3, the UESs and PSTsmore »
-
In an attempt to predict the learning of a player during a content agnostic educational video game session, this study used a dynamic bayesian network in which participants’ game play interactions were continuously recorded. Their actions were captured and used to make real-time inferences of the learning performance using a dynamic bayesian network. The predicted learning was then correlated with the post-test scores to establish the validity of assessment. The assessment was moderately positively correlated with the post-test scores demonstrating support for its validity.
-
Major challenges in engineering education include retention of undergraduate engineering students (UESs) and continued engagement after the first year when concepts increase in difficulty. Additionally, employers, as well as ABET, look for students to demonstrate non-technical skills, including the ability to work successfully in groups, the ability to communicate both within and outside their discipline, and the ability to find information that will help them solve problems and contribute to lifelong learning. Teacher education is also facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards (NGSS) and state level standards of learning. To help teachers meet these standards in their classrooms, education courses for preservice teachers (PSTs) must provide resources and opportunities to increase science and engineering knowledge, and the associated pedagogies. To address these challenges, Ed+gineering, an NSF-funded multidisciplinary collaborative service learning project, was implemented into two sets of paired-classes in engineering and education: a 100 level mechanical engineering class (n = 42) and a foundations class in education (n = 17), and a fluid mechanics class in mechanical engineering technology (n = 23) and a science methods class (n = 15). The paired classes collaborated in multidisciplinary teams ofmore »
-
Foundational engineering courses are critical to student success in engineering programs. The conceptually challenging content of these courses establishes the requisite knowledge for future classes. Thus, it is no surprise that such courses can serve as barriers or gatekeepers to successful student progress through the undergraduate curriculum. Although the difficulty of the courses may be necessary, often other features of the course delivery such as large class environments or a few very high-stakes assessments can further exacerbate these challenges. And especially problematic, past studies have shown that grade penalties associated with these courses and environments may disproportionately impact women. On the faculty side, institutions often turn to non-tenure track instructional faculty to teach multiple sections of foundational courses each semester. Although having faculty whose sole role is dedicated to quality teaching is an asset, benefits would likely be maximized when such faculty have clear metrics for paths to promotion, some autonomy and ownership regarding the curriculum, and overall job satisfaction. However, literature suggests that faculty, like students, note ill effects from large classes, such as challenges connecting and building rapport with students and having time to offer individualized feedback to students. Our NSF IUSE project focuses on instructors of largemore »
-
Abstract When students answer test questions incorrectly, we often assume they don't understand the content; instead, they may struggle with certain cognitive skills or with how questions are asked. Our goal was to look beyond content to understand what makes assessment questions most challenging. On the basis of more than 76,000 answers to multiple-choice questions in a large, introductory biology course, we examined three question components—cognitive skills, procedural knowledge, and question forms—and their interactions. We found that the most challenging questions require the students to organize information and make meaning from it—skills that are essential in science. For example, some of the most challenging questions are presented as unstructured word problems and require interpretation; to answer correctly, the students must identify and extract the important information and construct their understanding from it. Our results highlight the importance of teaching students to organize and make meaning from the content we teach.