skip to main content


Title: Neutrino Flavor Model Building and the Origins of Flavor and CP Violation: A Snowmass White Paper
Award ID(s):
1915005
NSF-PAR ID:
10346434
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Snowmass 2021 Community Summer Study
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present high-statistics results for the isovector and flavor diagonal charges of the proton using 11 ensembles of 2+1+1 flavor HISQ fermions. In the isospin symmetric limit, results for the neutron are given by the $u \leftrightarrow d$ interchange. A chiral-continuum fit with leading order corrections was made to extract the connected and disconnected contributions in the continuum limit and at $M_\pi=135$~MeV. All results are given in the $\overline{MS}$ scheme at 2~GeV. The isovector charges, $g_A^{u-d} = 1.218(25)(30)$, $g_S^{u-d} = 1.022(80)(60) $ and $g_T^{u-d} = 0.989(32)(10)$, are used to obtain low-energy constraints on novel scalar and tensor interactions, $\epsilon_{S}$ and $\epsilon_{T}$, at the TeV scale. The flavor diagonal axial charges are: $g_A^u \equiv \Delta u \equiv \langle 1 \rangle_{\Delta u^+} = 0.777(25)(30)$, $g_A^d \equiv \Delta d \equiv \langle 1 \rangle_{\Delta d^+} = -0.438(18)(30)$, and $g_A^s \equiv \Delta s \equiv \langle 1 \rangle_{\Delta s^+} = -0.053(8)$. Their sum gives the total quark contribution to the proton spin, $\sum_{q=u,d,s} (\frac{1}{2} \Delta q) = 0.143(31)(36)$. This result is in good agreement with the recent COMPASS analysis $0.13 < \frac{1}{2} \Delta \Sigma < 0.18$. Implications of results for the flavor diagonal tensor charges, $g_T^u = 0.784(28)(10)$, $g_T^d = -0.204(11)(10)$ and $g_T^s = -0.0027(16)$ for constraining the quark electric dipole moments and their contributions to the neutron electric dipole moment are discussed. These flavor diagonal charges also give the strength of the interaction of dark matter with nucleons via axial and tensor mediators. 
    more » « less
  2. null (Ed.)
    A bstract We present measurements of the branching fractions for the decays B → Kμ + μ − and B → Ke + e − , and their ratio ( R K ), using a data sample of 711 fb − 1 that contains 772 × 10 6 $$ B\overline{B} $$ B B ¯ events. The data were collected at the ϒ(4 S ) resonance with the Belle detector at the KEKB asymmetric-energy e + e − collider. The ratio R K is measured in five bins of dilepton invariant-mass-squared ( q 2 ): q 2 ∈ (0 . 1 , 4 . 0) , (4 . 00 , 8 . 12) , (1 . 0 , 6 . 0), (10 . 2 , 12 . 8) and ( > 14 . 18) GeV 2 /c 4 , along with the whole q 2 region. The R K value for q 2 ∈ (1 . 0 , 6 . 0) GeV 2 /c 4 is $$ {1.03}_{-0.24}^{+0.28} $$ 1.03 − 0.24 + 0.28 ± 0 . 01. The first and second uncertainties listed are statistical and systematic, respectively. All results for R K are consistent with Standard Model predictions. We also measure CP -averaged isospin asymmetries in the same q 2 bins. The results are consistent with a null asymmetry, with the largest difference of 2.6 standard deviations occurring for the q 2 ∈ (1 . 0 , 6 . 0) GeV 2 /c 4 bin in the mode with muon final states. The measured differential branching fractions, $$ d\mathrm{\mathcal{B}} $$ d ℬ /dq 2 , are consistent with theoretical predictions for charged B decays, while the corresponding values are below the expectations for neutral B decays. We have also searched for lepton-flavor-violating B → Kμ ± e ∓ decays and set 90% confidence-level upper limits on the branching fraction in the range of 10 − 8 for B + → K + μ ± e ∓ , and B 0 → K 0 μ ± e ∓ modes. 
    more » « less
  3. Abstract

    Multi-messenger astrophysics has produced a wealth of data with much more to come in the future. This enormous data set will reveal new insights into the physics of core-collapse supernovae, neutron star mergers, and many other objects where it is actually possible, if not probable, that new physics is in operation. To tease out different possibilities, we will need to analyze signals from photons, neutrinos, gravitational waves, and chemical elements. This task is made all the more difficult when it is necessary to evolve the neutrino component of the radiation field and associated quantum-mechanical property of flavor in order to model the astrophysical system of interest—a numerical challenge that has not been addressed to this day. In this work, we take a step in this direction by adopting the technique of angular-integrated moments with a truncated tower of dynamical equations and a closure, convolving the flavor-transformation with spatial transport to evolve the neutrino radiation quantum field. We show that moments capture the dynamical features of fast flavor instabilities in a variety of systems, although our technique is by no means a universal blueprint for solving fast flavor transformation. To evaluate the effectiveness of our moment results, we compare to a more precise particle-in-cell method. Based on our results, we propose areas for improvement and application to complementary techniques in the future.

     
    more » « less