skip to main content


Title: Increasing the power threshold in fiber amplifiers considering both the transverse mode and Brillouin instabilities
We study the Brillouin instability and the transverse mode instability in a combined computational model for fiber amplifiers. We find the optimal core diameter, which leads to the highest power threshold and output power.  more » « less
Award ID(s):
1809622
NSF-PAR ID:
10346507
Author(s) / Creator(s):
Date Published:
Journal Name:
Conference on Lasers and Electro-Optics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We investigate a secondary proton beam instability coexisting with the ambient solar wind turbulence at 50R. Three-dimensional hybrid numerical simulations (particle ions and a quasi-neutralizing electron fluid) are carried out with the plasma parameters in the observed range. In the turbulent background, the particle distribution function, in particular the slope of the “bump-on-tail” responsible for the instability, is time-dependent and inhomogeneous. The presence of the turbulence substantially reduces the growth rate and saturation level of the instability. We derive magnetic power spectra from the observational data and perform a statistical analysis to evaluate the average turbulence intensity at 50R. This information is used to link the observed frequency spectrum to the wavenumber spectrum in the simulations. We verify that Taylor’s frozen-in hypothesis is valid for this purpose to a sufficient extent. To reproduce the typical magnetic power spectrum of the instability observed concurrently with the background turbulence, an artificial spacecraft probe is run through the simulation box. The thermal-ion instabilities are often seen as power elevations in the kinetic range of scales above an extrapolation of the turbulence spectrum from larger scales. We show that the elevated power in the simulations is much higher than the background level. Therefore, the turbulence at the average intensity does not obscure the secondary proton beam instability, as opposed to the solar wind at 1 au, in which the ambient turbulence typically obscures thermal-ion instabilities.

     
    more » « less
  2. Voltage instability occurs when a power system is unable to meet reactive power demand at one or more buses. Voltage instability events have caused several major outages and promise to become more frequent due to increasing energy demand. The future smart grid may help to ensure voltage stability by enabling rapid detection of possible voltage instability and implementation of corrective action. These corrective actions will only be effective in restoring stability if they are chosen in a timely, scalable manner. Current techniques for selecting control actions, however, rely on exhaustive search, and hence may choose an inefficient control strategy. In this paper, we propose a submodular optimization approach to designing a control strategy to prevent voltage instability at one or more buses. Our key insight is that the deviation from the desired voltage is a supermodular function of the set of reactive power injections that are employed, leading to computationally efficient control algorithms with provable optimality guarantees. Furthermore, we show that the optimality bound of our approach can be improved from 1/3 to 1/2 when the power system operates under heavy loading conditions. We demonstrate our framework through extensive simulation study on the IEEE 30 bus test case. 
    more » « less
  3. ABSTRACT

    Convection in massive main-sequence stars generates large-scale magnetic fields in their cores that persists as they evolve up the red giant branch. The remnants of these fields may take the form of the Prendergast magnetic field, a combination of poloidal and toroidal field components that are expected to stabilize each other. Previous analytic and numerical calculations did not find any evidence for instability of the Prendergast field over short time-scales. In this paper, we present numerical simulations which show a long time-scale, linear instability of this magnetic field. We find the instability to be robust to changes in boundary conditions and it is not stabilized by strong stable stratification. The instability is a resistive instability, and the growth rate has a power-law dependence on the resistivity, in which the growth rate decreases as the resistivity decreases. We estimate the growth rate of the instability in stars by extrapolating this power law to stellar values of the resistivity. The instability is sufficiently rapid to destabilize the magnetic field on time-scales shorter than the stellar evolution time-scale, indicating that the Prendergast field is not a good model to use in studies of magnetic fields in stars.

     
    more » « less
  4. Abstract

    Advanced LIGO and other ground-based interferometric gravitational-wave detectors use high laser power to minimize shot noise and suspended optics to reduce seismic noise coupling. This can result in an opto-mechanical coupling which can become unstable and saturate the interferometer control systems. The severity of these parametric instabilities scales with circulating laser power and first hindered LIGO operations in 2014. Static thermal tuning and active electrostatic damping have previously been used to control parametric instabilities at lower powers but are insufficient as power is increased. Here we report the first demonstration of dynamic thermal compensation to avoid parametric instability in an Advanced LIGO detector. Annular ring heaters that compensate central heating are used to tune the optical mode away from multiple problematic mirror resonance frequencies. We develop a single-cavity approximation model to simulate the optical beat note frequency during the central heating and ring heating transient. An experiment of dynamic ring heater tuning at the LIGO Livingston detector was carried out at 170 kW circulating power and, in agreement with our model, the third order optical beat note is controlled to avoid instability of the 15 and 15.5 kHz mechanical modes. We project that dynamic thermal compensation with ring heater input conditioning can be used in parallel with acoustic mode dampers to control the optical mode transient and avoid parametric instability of these modes up to Advanced LIGO’s design circulating power of 750  kW. The experiment also demonstrates the use of three mode interaction monitoring as a sensor of the cavity geometry, used to maintain theg-factor product tog1g2= 0.829 ± 0.004.

     
    more » « less
  5. Abstract We perform a statistical analysis of observed magnetic spectra in the solar wind at 1 au with localized power elevations above the level of the ambient turbulent fluctuations. We show that the elevations are seen only when the intensity of the ambient fluctuations is sufficiently low. Assuming that the spectral elevations are caused by thermal-ion instabilities, this suggests that on average the effect of the solar wind background is strong enough to suppress the instability or obscure it or both. We then carry out nonlinear numerical simulations with particle ions and an electron fluid to model a thermal-ion instability coexisting with an ambient turbulence. The parameters of the simulation are taken from a known solar wind interval where an instability was assumed to exist based on the linear theory and a bi-Maxwellian fit of the observed distribution with core and secondary-beam protons. The numerical model closely matches the position of the observed spectral elevation in the wavenumber space. This confirms that the thermal-ion instability is responsible for the elevation. At the same time, the magnitude of the elevation turns out to be smaller than in the real solar wind. When higher intensity of the turbulence is used in the simulation, which is typical of solar wind in general, the power elevation is no longer seen. This is in agreement with the reduced observability of the elevations at higher intensities. However, the simulations show that the turbulence does not simply obscure the instability but also lowers its saturation level. 
    more » « less