skip to main content


Title: Towards Scalable Voltage Control in Smart Grid: A Submodular Optimization Approach
Voltage instability occurs when a power system is unable to meet reactive power demand at one or more buses. Voltage instability events have caused several major outages and promise to become more frequent due to increasing energy demand. The future smart grid may help to ensure voltage stability by enabling rapid detection of possible voltage instability and implementation of corrective action. These corrective actions will only be effective in restoring stability if they are chosen in a timely, scalable manner. Current techniques for selecting control actions, however, rely on exhaustive search, and hence may choose an inefficient control strategy. In this paper, we propose a submodular optimization approach to designing a control strategy to prevent voltage instability at one or more buses. Our key insight is that the deviation from the desired voltage is a supermodular function of the set of reactive power injections that are employed, leading to computationally efficient control algorithms with provable optimality guarantees. Furthermore, we show that the optimality bound of our approach can be improved from 1/3 to 1/2 when the power system operates under heavy loading conditions. We demonstrate our framework through extensive simulation study on the IEEE 30 bus test case.  more » « less
Award ID(s):
1544173
NSF-PAR ID:
10017840
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS)
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the increase of uncertain and intermittent renewable energy supply on the grid, the power system has become more vulnerable to instability. In this paper, we develop a demand response strategy to improve power system small-signal stability. We pose the problem as an optimization problem wherein the total demand-responsive load is held constant at each time instance but shifted between different buses to improve small-signal stability, which is measured by small-signal stability metrics that are functions of subsets of the system’s eigenvalues, such as the smallest damping ratio. To solve the problem, we use iterative linear programming and generalized eigenvalue sensitivities. We demonstrate the approach via a case study that uses the IEEE 14-bus system. Our results show that shifting the load between buses, can improve a small-signal stability margin. We explore the use of models of different fidelity and find that it is important to include models of the automatic voltage regulators and power system stabilizers. In addition, we show that load shifting can achieve similar improvements to generation shifting and better improvement than simply tuning power system stabilizers. 
    more » « less
  2. Voltage collapse is a type of blackout-inducing dynamic instability that occurs when the power demand exceeds the maximum power that can be transferred through the network. The traditional (preventive) approach to avoid voltage collapse is based on ensuring that the network never reaches its maximum capacity. However, such an approach leads to inefficiencies as it prevents operators to fully utilize the network resources and does not account for unprescribed events. To overcome this limitation, this paper seeks to initiate the study of voltage collapse stabilization. More precisely, for a DC star network, we formulate the problem of voltage stability as a dynamic problem where each load seeks to achieve a constant power consumption by updating its conductance as the voltage changes. We show that such a system can be interpreted as a game, where each player (load) seeks to myopically maximize their utility using a gradient-based response. Using this framework, we show that voltage collapse is the unique Nash Equilibrium of the induced game and is caused by the lack of cooperation between loads. Finally, we propose a Voltage Collapse Stabilizer (VCS) controller that uses (flexible) loads that are willing to cooperate and provides a fair allocation of the curtailed demand. Our solution stabilizes voltage collapse even in the presence of non-cooperative loads. Numerical simulations validate several features of our controllers. 
    more » « less
  3. null (Ed.)
    Contingency Constrained Optimal Power Flow (CCOPF) differs from traditional Optimal Power Flow (OPF) because its generation dispatch is planned to work with state variables between constraint limits, considering a specific contingency. When it is not desired to have changes in the power dispatch after the contingency occurs, the CCOPF is studied with a preventive perspective, whereas when the contingency occurs and the power dispatch needs to change to operate the system between limits in the post-contingency state, the problem is studied with a corrective perspective. As current power system software tools mainly focus on the traditional OPF problem, having the means to solve CCOPF will benefit power systems planning and operation. This paper presents a Quadratically Constrained Quadratic Programming (QCQP) formulation built within the matpower environment as a solution strategy to the preventive CCOPF. Moreover, an extended OPF model that forces the network to meet all constraints under contingency is proposed as a strategy to find the power dispatch solution for the corrective CCOPF. Validation is made on the IEEE 14-bus test system including photovoltaic generation in one simulation case. It was found that in the QCQP formulation, the power dispatch calculated barely differs in both pre- and post-contingency scenarios while in the OPF extended power network, node voltage values in both pre- and post-contingency scenarios are equal in spite of having different power dispatch for each scenario. This suggests that both the QCQP and the extended OPF formulations proposed, could be implemented in power system software tools in order to solve CCOPF problems from a preventive or corrective perspective. 
    more » « less
  4. Large‐area, long‐duration power outages are increasingly common in the United States, and cost the economy billions of dollars each year. Building a strategy to enhance grid resilience requires an understanding of the optimal mix of preventive and corrective actions, the inefficiencies that arise when self‐interested parties make resilience investment decisions, and the conditions under which regulators may facilitate the realization of efficient market outcomes. We develop a bi‐level model to examine the mix of preventive and corrective measures that enhances grid resilience to a severe storm. The model represents a Stackelberg game between a regulated utility (leader) that may harden distribution feeders before a long‐duration outage and/or deploy restoration crews after the disruption, and utility customers with varying preferences for reliable power (followers) who may invest in backup generators. We show that the regulator's denial of cost recovery for the utility's preventive expenditures, coupled with the misalignment between private objectives and social welfare maximization, yields significant inefficiencies in the resilience investment mix. Allowing cost recovery for a higher share of the utility's capital expenditures in preventive measures, extending the time horizon associated with damage cost recovery, and adopting a storm restoration compensation mechanism shift the realized market outcome toward the efficient solution. If about one‐fifth of preventive resilience investments is approved by regulators, requiring utilities to pay a compensation of $365 per customer for a 3‐day outage (about seven times the level of compensation currently offered by US utilities) provides significant incentives toward more efficient preventive resilience investments. 
    more » « less
  5. Low-latency data processing is essential for wide-area monitoring of smart grids. Distributed and local data processing is a promising approach for enabling low-latency requirements and avoiding the large overhead of transferring large volumes of time-sensitive data to central processing units. State estimation in power systems is one of the key functions in wide-area monitoring, which can greatly benefit from distributed data processing and improve real-time system monitoring. In this paper, data-driven Kalman filters have been used for multi-area distributed state estimation. The presented state estimation approaches are data-driven and model-independent. The design phase is offline and involves modeling multivariate time-series measurements from PMUs using linear and non-linear system identification techniques. The measurements of the phase angle, voltage, reactive and real power are used for next-step prediction of the state of the buses. The performance of the presented data-driven, distributed state estimation techniques are evaluated for various numbers of regions and modes of information sharing on the IEEE 118 test case system. 
    more » « less