skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing school reopening in the COVID-19 pre-vaccination period in Bogotá, Colombia: A modeling study
The COVID-19 pandemic has affected millions of people around the world. In Colombia, 1.65 million cases and 43,495 deaths were reported in 2020. Schools were closed in many places around the world to slow down the spread of SARS-CoV-2. In Bogotá, Colombia, most of the public schools were closed from March 2020 until the end of the year. School closures can exacerbate poverty, particularly in low- and middle-income countries. To reconcile these two priorities in health and fighting poverty, we estimated the impact of school reopening for in-person instruction in 2021. We used an agent-based model of SARS-CoV-2 transmission calibrated to the daily number of deaths. The model includes schools that represent private and public schools in terms of age, enrollment, location, and size. We simulated school reopening at different capacities, assuming a high level of face-mask use, and evaluated the impact on the number of deaths in the city. We also evaluated the impact of reopening schools based on grade and multidimensional poverty index. We found that school at 35% capacity, assuming face-mask adherence at 75% in>8 years of age, had a small impact on the number of deaths reported in the city during a third wave. The increase in deaths was smallest when only pre-kinder was opened, and largest when secondary school was opened. At larger capacities, the impact on the number of deaths of opening pre-kinder was below 10%. In contrast, reopening other grades above 50% capacity substantially increased the number of deaths. Reopening schools based on their multidimensional poverty index resulted in a similar impact, irrespective of the level of poverty of the schools that were reopened. The impact of schools reopening was lower for pre-kinder grades and the magnitude of additional deaths associated with school reopening can be minimized by adjusting capacity in older grades.  more » « less
Award ID(s):
2027718
PAR ID:
10346524
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Cortesi, Paolo Angelo
Date Published:
Journal Name:
PLOS Global Public Health
Volume:
2
Issue:
6
ISSN:
2767-3375
Page Range / eLocation ID:
e0000467
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ndeffo Mbah, Martial L (Ed.)
    The SARS-CoV-2 pandemic led to closure of nearly all K-12 schools in the United States of America in March 2020. Although reopening K-12 schools for in-person schooling is desirable for many reasons, officials understand that risk reduction strategies and detection of cases are imperative in creating a safe return to school. Furthermore, consequences of reclosing recently opened schools are substantial and impact teachers, parents, and ultimately educational experiences in children. To address competing interests in meeting educational needs with public safety, we compare the impact of physical separation through school cohorts on SARS-CoV-2 infections against policies acting at the level of individual contacts within classrooms. Using an age-stratified Susceptible-Exposed-Infected-Removed model, we explore influences of reduced class density, transmission mitigation, and viral detection on cumulative prevalence. We consider several scenarios over a 6-month period including (1) multiple rotating cohorts in which students cycle through in-person instruction on a weekly basis, (2) parallel cohorts with in-person and remote learning tracks, (3) the impact of a hypothetical testing program with ideal and imperfect detection, and (4) varying levels of aggregate transmission reduction. Our mathematical model predicts that reducing the number of contacts through cohorts produces a larger effect than diminishing transmission rates per contact. Specifically, the latter approach requires dramatic reduction in transmission rates in order to achieve a comparable effect in minimizing infections over time. Further, our model indicates that surveillance programs using less sensitive tests may be adequate in monitoring infections within a school community by both keeping infections low and allowing for a longer period of instruction. Lastly, we underscore the importance of factoring infection prevalence in deciding when a local outbreak of infection is serious enough to require reverting to remote learning. 
    more » « less
  2. Adrish, Muhammad (Ed.)
    Mexico has experienced one of the highest COVID-19 mortality rates in the world. A delayed implementation of social distancing interventions in late March 2020 and a phased reopening of the country in June 2020 has facilitated sustained disease transmission in the region. In this study we systematically generate and compare 30-day ahead forecasts using previously validated growth models based on mortality trends from the Institute for Health Metrics and Evaluation for Mexico and Mexico City in near real-time. Moreover, we estimate reproduction numbers for SARS-CoV-2 based on the methods that rely on genomic data as well as case incidence data. Subsequently, functional data analysis techniques are utilized to analyze the shapes of COVID-19 growth rate curves at the state level to characterize the spatiotemporal transmission patterns of SARS-CoV-2. The early estimates of the reproduction number for Mexico were estimated between R t ~1.1–1.3 from the genomic and case incidence data. Moreover, the mean estimate of R t has fluctuated around ~1.0 from late July till end of September 2020. The spatial analysis characterizes the state-level dynamics of COVID-19 into four groups with distinct epidemic trajectories based on epidemic growth rates. Our results show that the sequential mortality forecasts from the GLM and Richards model predict a downward trend in the number of deaths for all thirteen forecast periods for Mexico and Mexico City. However, the sub-epidemic and IHME models perform better predicting a more realistic stable trajectory of COVID-19 mortality trends for the last three forecast periods (09/21-10/21, 09/28-10/27, 09/28-10/27) for Mexico and Mexico City. Our findings indicate that phenomenological models are useful tools for short-term epidemic forecasting albeit forecasts need to be interpreted with caution given the dynamic implementation and lifting of social distancing measures. 
    more » « less
  3. In Spring 2021, the highly transmissible SARS-CoV-2 Delta variant began to cause increases in cases, hospitalizations, and deaths in parts of the United States. At the time, with slowed vaccination uptake, this novel variant was expected to increase the risk of pandemic resurgence in the US in summer and fall 2021. As part of the COVID-19 Scenario Modeling Hub, an ensemble of nine mechanistic models produced 6-month scenario projections for July–December 2021 for the United States. These projections estimated substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant, projected to occur across most of the US, coinciding with school and business reopening. The scenarios revealed that reaching higher vaccine coverage in July–December 2021 reduced the size and duration of the projected resurgence substantially, with the expected impacts was largely concentrated in a subset of states with lower vaccination coverage. Despite accurate projection of COVID-19 surges occurring and timing, the magnitude was substantially underestimated 2021 by the models compared with the of the reported cases, hospitalizations, and deaths occurring during July–December, highlighting the continued challenges to predict the evolving COVID-19 pandemic. Vaccination uptake remains critical to limiting transmission and disease, particularly in states with lower vaccination coverage. Higher vaccination goals at the onset of the surge of the new variant were estimated to avert over 1.5 million cases and 21,000 deaths, although may have had even greater impacts, considering the underestimated resurgence magnitude from the model. 
    more » « less
  4. Appearing at the end of 2019, a novel virus (later identified as SARS-CoV-2) was characterized in the city of Wuhan in Hubei Province, China. As of the time of writing, the disease caused by this virus (known as COVID-19) has already resulted in over three million deaths worldwide. SARS-CoV-2 infections and deaths, however, have been highly unevenly distributed among age groups, sexes, countries, and jurisdictions over the course of the pandemic. Herein, I present a tool (the covid19.Explorer R package and web application) that has been designed to explore and analyze publicly available United States COVID-19 infection and death data from the 2020/21 U.S. SARS-CoV-2 pandemic. The analyses and visualizations that this R package and web application facilitate can help users better comprehend the geographic progress of the pandemic, the effectiveness of non-pharmaceutical interventions (such as lockdowns and other measures, which have varied widely among U.S. states), and the relative risks posed by COVID-19 to different age groups within the U.S. population. The end result is an interactive tool that will help its users develop an improved understanding of the temporal and geographic dynamics of the SARS-CoV-2 pandemic, accessible to lay people and scientists alike. 
    more » « less
  5. Abstract Since its global emergence in 2020, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused multiple epidemics in the United States. When medical treatments for the virus were still emerging and a vaccine was not yet available, state and local governments sought to limit its spread by enacting various social-distancing interventions, such as school closures and lockdowns; however, the effectiveness of these interventions was unknown. We applied an established, semimechanistic Bayesian hierarchical model of these interventions to the spread of SARS-CoV-2 from Europe to the United States, using case fatalities from February 29, 2020, up to April 25, 2020, when some states began reversing their interventions. We estimated the effects of interventions across all states, contrasted the estimated reproduction numbers before and after lockdown for each state, and contrasted the predicted number of future fatalities with the actual number of fatalities as a check of the model’s validity. Overall, school closures and lockdowns were the only interventions modeled that had a reliable impact on the time-varying reproduction number, and lockdown appears to have played a key role in reducing that number to below 1.0. We conclude that reversal of lockdown without implementation of additional, equally effective interventions will enable continued, sustained transmission of SARS-CoV-2 in the United States. 
    more » « less