skip to main content


Title: An examination of school reopening strategies during the SARS-CoV-2 pandemic
The SARS-CoV-2 pandemic led to closure of nearly all K-12 schools in the United States of America in March 2020. Although reopening K-12 schools for in-person schooling is desirable for many reasons, officials understand that risk reduction strategies and detection of cases are imperative in creating a safe return to school. Furthermore, consequences of reclosing recently opened schools are substantial and impact teachers, parents, and ultimately educational experiences in children. To address competing interests in meeting educational needs with public safety, we compare the impact of physical separation through school cohorts on SARS-CoV-2 infections against policies acting at the level of individual contacts within classrooms. Using an age-stratified Susceptible-Exposed-Infected-Removed model, we explore influences of reduced class density, transmission mitigation, and viral detection on cumulative prevalence. We consider several scenarios over a 6-month period including (1) multiple rotating cohorts in which students cycle through in-person instruction on a weekly basis, (2) parallel cohorts with in-person and remote learning tracks, (3) the impact of a hypothetical testing program with ideal and imperfect detection, and (4) varying levels of aggregate transmission reduction. Our mathematical model predicts that reducing the number of contacts through cohorts produces a larger effect than diminishing transmission rates per contact. Specifically, the latter approach requires dramatic reduction in transmission rates in order to achieve a comparable effect in minimizing infections over time. Further, our model indicates that surveillance programs using less sensitive tests may be adequate in monitoring infections within a school community by both keeping infections low and allowing for a longer period of instruction. Lastly, we underscore the importance of factoring infection prevalence in deciding when a local outbreak of infection is serious enough to require reverting to remote learning.  more » « less
Award ID(s):
2030355
NSF-PAR ID:
10351407
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Ndeffo Mbah, Martial L
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
5
ISSN:
1932-6203
Page Range / eLocation ID:
e0251242
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    School closures may reduce the size of social networks among children, potentially limiting infectious disease transmission. To estimate the impact of K–12 closures and reopening policies on children's social interactions and COVID-19 incidence in California's Bay Area, we collected data on children's social contacts and assessed implications for transmission using an individual-based model. Elementary and Hispanic children had more contacts during closures than high school and non-Hispanic children, respectively. We estimated that spring 2020 closures of elementary schools averted 2167 cases in the Bay Area (95% CI: −985, 5572), fewer than middle (5884; 95% CI: 1478, 11.550), high school (8650; 95% CI: 3054, 15 940) and workplace (15 813; 95% CI: 9963, 22 617) closures. Under assumptions of moderate community transmission, we estimated that reopening for a four-month semester without any precautions will increase symptomatic illness among high school teachers (an additional 40.7% expected to experience symptomatic infection, 95% CI: 1.9, 61.1), middle school teachers (37.2%, 95% CI: 4.6, 58.1) and elementary school teachers (4.1%, 95% CI: −1.7, 12.0). However, we found that reopening policies for elementary schools that combine universal masking with classroom cohorts could result in few within-school transmissions, while high schools may require masking plus a staggered hybrid schedule. Stronger community interventions (e.g. remote work, social distancing) decreased the risk of within-school transmission across all measures studied, with the influence of community transmission minimized as the effectiveness of the within-school measures increased. 
    more » « less
  2. Cortesi, Paolo Angelo (Ed.)
    The COVID-19 pandemic has affected millions of people around the world. In Colombia, 1.65 million cases and 43,495 deaths were reported in 2020. Schools were closed in many places around the world to slow down the spread of SARS-CoV-2. In Bogotá, Colombia, most of the public schools were closed from March 2020 until the end of the year. School closures can exacerbate poverty, particularly in low- and middle-income countries. To reconcile these two priorities in health and fighting poverty, we estimated the impact of school reopening for in-person instruction in 2021. We used an agent-based model of SARS-CoV-2 transmission calibrated to the daily number of deaths. The model includes schools that represent private and public schools in terms of age, enrollment, location, and size. We simulated school reopening at different capacities, assuming a high level of face-mask use, and evaluated the impact on the number of deaths in the city. We also evaluated the impact of reopening schools based on grade and multidimensional poverty index. We found that school at 35% capacity, assuming face-mask adherence at 75% in>8 years of age, had a small impact on the number of deaths reported in the city during a third wave. The increase in deaths was smallest when only pre-kinder was opened, and largest when secondary school was opened. At larger capacities, the impact on the number of deaths of opening pre-kinder was below 10%. In contrast, reopening other grades above 50% capacity substantially increased the number of deaths. Reopening schools based on their multidimensional poverty index resulted in a similar impact, irrespective of the level of poverty of the schools that were reopened. The impact of schools reopening was lower for pre-kinder grades and the magnitude of additional deaths associated with school reopening can be minimized by adjusting capacity in older grades. 
    more » « less
  3. In the face of a long-running pandemic, understanding the drivers of ongoing SARS-CoV-2 transmission is crucial for the rational management of COVID-19 disease burden. Keeping schools open has emerged as a vital societal imperative during the pandemic, but in-school transmission of SARS-CoV-2 can contribute to further prolonging the pandemic. In this context, the role of schools in driving SARS-CoV-2 transmission acquires critical importance. Here we model in-school transmission from first principles to investigate the effectiveness of layered mitigation strategies on limiting in-school spread. We examined the effect of masks and air quality (ventilation, filtration and ionizers) on steady-state viral load in classrooms, as well as on the number of particles inhaled by an uninfected person. The effectiveness of these measures in limiting viral transmission was assessed for variants with different levels of mean viral load (ancestral, Delta, Omicron). Our results suggest that a layered mitigation strategy can be used effectively to limit in-school transmission, with certain limitations. First, poorly designed strategies (insufficient ventilation, no masks, staying open under high levels of community transmission) will permit in-school spread even if some level of mitigation is present. Second, for viral variants that are sufficiently contagious, it may be difficult to construct any set of interventions capable of blocking transmission once an infected individual is present, underscoring the importance of other measures. Our findings provide practical recommendations; in particular, the use of a layered mitigation strategy that is designed to limit transmission, with other measures such as frequent surveillance testing and smaller class sizes (such as by offering remote schooling options to those who prefer it) as needed. 
    more » « less
  4. Abstract Background

    Thousands of school systems have struggled with the decisions about how to deliver education safely and effectively amid the COVID19 pandemic. This study evaluates the public health impact of various school reopening scenarios (when, and how to return to in-person instruction) on the spread of COVID19.

    Methods

    An agent-based simulation model was adapted and used to project the impact of various school reopening strategies on the number of infections, hospitalizations, and deaths in the state of Georgia during the study period, i.e., February 18th-November 24th, 2020. The tested strategies include (i)schools closed, i.e., all students receive online instruction, (ii)alternating school day, i.e., half of the students receive in-person instruction on Mondays and Wednesdays and the other half on Tuesdays and Thursdays, (iii)alternating school day for children, i.e., half of the children (ages 0-9) receive in-person instruction on Mondays and Wednesdays and the other half on Tuesdays and Thursdays, (iv)children only, i.e., only children receive in-person instruction, (v)regular, i.e., all students return to in-person instruction. We also tested the impact of universal masking in schools.

    Results

    Across all scenarios, the number of COVID19-related deaths ranged from approximately 8.8 to 9.9 thousand, the number of cumulative infections ranged from 1.76 to 1.96 million for adults and 625 to 771 thousand for children and youth, and the number of COVID19-related hospitalizations ranged from approximately 71 to 80 thousand during the study period. Compared to schools reopening August 10 with aregularreopening strategy, the percentage of the population infected reduced by 13%, 11%, 9%, and 6% in theschools closed,alternating school day for children,children only, andalternating school dayreopening strategies, respectively. Universal masking in schools for all students further reduced outcome measures.

    Conclusions

    Reopening schools following aregularreopening strategy would lead to higher deaths, hospitalizations, and infections. Hybrid in-person and online reopening strategies, especially if offered as an option to families and teachers who prefer to opt-in, provide a good balance in reducing the infection spread compared to theregularreopening strategy, while ensuring access to in-person education.

     
    more » « less
  5. Low, Nicola (Ed.)
    Background While booster vaccinations clearly reduce the risk of severe Coronavirus Disease 2019 (COVID-19) and death, the impact of boosters on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections has not been fully characterized: Doing so requires understanding their impact on asymptomatic and mildly symptomatic infections that often go unreported but nevertheless play an important role in spreading SARS-CoV-2. We sought to estimate the impact of COVID-19 booster doses on SARS-CoV-2 infections in a vaccinated population of young adults during an Omicron BA.1-predominant period. Methods and findings We implemented a cohort study of young adults in a college environment (Cornell University’s Ithaca campus) from a period when Omicron BA.1 was the predominant SARS-CoV-2 variant on campus (December 5 to December 31, 2021). Participants included 15,800 university students who completed initial vaccination series with vaccines approved by the World Health Organization for emergency use, were enrolled in mandatory at-least-weekly surveillance polymerase chain reaction (PCR) testing, and had no positive SARS-CoV-2 PCR test within 90 days before the start of the study period. Robust multivariable Poisson regression with the main outcome of a positive SARS-CoV-2 PCR test was performed to compare those who completed their initial vaccination series and a booster dose to those without a booster dose. A total of 1,926 unique SARS-CoV-2 infections were identified in the study population. Controlling for sex, student group membership, date of completion of initial vaccination series, initial vaccine type, and temporal effect during the study period, our analysis estimates that receiving a booster dose further reduces the rate of having a PCR-detected SARS-CoV-2 infection relative to an initial vaccination series by 56% (95% confidence interval [42%, 67%], P < 0.001). While most individuals had recent booster administration before or during the study period (a limitation of our study), this result is robust to the assumed delay over which a booster dose becomes effective (varied from 1 day to 14 days). The mandatory active surveillance approach used in this study, under which 86% of the person-days in the study occurred, reduces the likelihood of outcome misclassification. Key limitations of our methodology are that we did not have an a priori protocol or statistical analysis plan because the analysis was initially done for institutional research purposes, and some analysis choices were made after observing the data. Conclusions We observed that boosters are effective, relative to completion of initial vaccination series, in further reducing the rate of SARS-CoV-2 infections in a college student population during a period when Omicron BA.1 was predominant; booster vaccinations for this age group may play an important role in reducing incidence of COVID-19. 
    more » « less