skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Facile generation of bridged medium-sized polycyclic systems by rhodium-catalysed intramolecular (3+2) dipolar cycloadditions
Abstract Bridged medium-sized bicyclo[m.n.2] ring systems are common in natural products and potent pharmaceuticals, and pose a great synthetic challenge. Chemistry for making bicyclo[m.n.2] ring systems remains underdeveloped. Currently, there are no general reactions available for the single-step synthesis of various bridged bicyclo[m.n.2] ring systems from acyclic precursors. Here, we report an unusual type II intramolecular (3+2) dipolar cycloaddition strategy for the syntheses of various bridged bicyclo[m.n.2] ring systems. This rhodium-catalysed cascade reaction provides a relatively general strategy for the direct and efficient regioselective and diastereoselective synthesis of highly functionalized and synthetically challenging bridged medium-sized polycyclic systems. Asymmetric total synthesis of nakafuran-8 was accomplished using this method as a key step. Quantum mechanical calculations demonstrate the mechanism of this transformation and the origins of its multiple selectivities. This reaction will inspire the design of the strategies to make complex bioactive molecules with bridged medium-sized polycyclic systems.  more » « less
Award ID(s):
1764328
PAR ID:
10346563
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Explored was the competitive ring-closing metathesis vs. ring-rearrangement metathesis of bicyclo[3.2.1]octenes prepared by a simple and convergent synthesis from bicyclic alkylidenemalono-nitriles and allylic electrophiles. It was uncovered that ring-closing metathesis occurs exclusively on the tetraene-variant, yielding unique, stereochemically and functionally rich polycyclic bridged frameworks, whereas the reduced version (a triene) undergoes ring-rearrangement metathesis to 5 – 6 – 5 fused ring systems resembling the isoryanodane core. 
    more » « less
  2. The bicyclo[3.3.1]nonane architecture is a privileged structural motif found in over 1000 natural products with relevance to neurodegenerative disease, bacterial and parasitic infection, and cancer among others. Despite disparate biosynthetic machinery, alkaloid, terpene, and polyketide-producing organisms have all evolved pathways to incorporate this carbocyclic ring system. Natural products of mixed polyketide/terpenoid origins (meroterpenes) are a particularly rich and important source of biologically active bicyclo[3.3.1]nonane-containing molecules. Herein we detail a fully synthetic strategy toward this broad family of targets based on an abiotic annulation/rearrangement strategy resulting in a 10-step total synthesis of garsubellin A, an enhancer of choline acetyltransferase and member of the large family of polycyclic polyprenylated acylphloroglucinols. This work solidifies a strategy for making multiple, diverse meroterpene chemotypes in a programmable assembly process involving a minimal number of chemical transformations. 
    more » « less
  3. Abstract A 14‐step synthesis of (+)‐cochlearol B is reported. This renoprotective meroterpenoid features a unique core structure containing a densely substituted cyclobutane ring with three stereocenters. Our strategy employed an organocatalytic Kabbe condensation in route to the key chromenyl triflate. A subsequent Catellani reaction incorporated the remaining carbon atoms featured in the skeleton of cochlearol B. An ensuing visible‐light‐mediated [2+2] photocycloaddition closed the cyclobutane and formed the central bicyclo[3.2.0]heptane core. Notably, careful design and tuning of the Catellani and photocycloaddition reactions proved crucial in overcoming undesired reactivity, including cyclopropanation reactions and [4+2] cycloadditions. 
    more » « less
  4. Abstract Reactions that lead to destruction of aromatic ring systems often require harsh conditions and, thus, take place with poor selectivities. Selective partial dearomatization of fused arenes is even more challenging but can be a strategic approach to creating versatile, complex polycyclic frameworks. Herein we describe a general organophotoredox approach for the chemo- and regioselective dearomatization of structurally diverse polycyclic aromatics, including quinolines, isoquinolines, quinoxalines, naphthalenes, anthracenes and phenanthrenes. The success of the method for chemoselective oxidative rupture of aromatic moieties relies on precise manipulation of the electronic nature of the fused polycyclic arenes. Mechanistic studies show that the addition of a hydrogen atom transfer (HAT) agent helps favor the dearomatization pathway over the more thermodynamically downhill aromatization pathway. We show that this strategy can be applied to rapid synthesis of biologically valued targets and late-stage skeletal remodeling en route to complex structures. 
    more » « less
  5. Abstract Massarinolin A and purpurolides are bioactive bergamotane sesquiterpenes condensed with a variety of synthetically challenging ring systems: a bicyclo[3.1.1]heptane, an oxaspiro[3.4]octane, and a dioxaspiro[4.4]nonane (oxaspirolactone). Herein, we report the first enantioselective total syntheses of massarinolin A, purpurolides B, D, E, and 2,3‐deoxypurpurolide C. Our synthesis and computational analysis also led to a structural revision of massarinolin A. The divergent approach features an enantioselective organocatalyzed Diels–Alder reaction to install the first stereogenic center in highee, a scalable flow photochemical Wolff rearrangement to build the key bicyclo[3.1.1]heptane, a furan oxidative cyclization to form the oxaspirolactone, a late‐stage allylic C−H oxidation, and a Myers’ NBSH‐promoted sigmatropic elimination to install theexomethylene group of massarinolin A. 
    more » « less