skip to main content


Title: Selective skeletal editing of polycyclic arenes using organophotoredox dearomative functionalization
Abstract

Reactions that lead to destruction of aromatic ring systems often require harsh conditions and, thus, take place with poor selectivities. Selective partial dearomatization of fused arenes is even more challenging but can be a strategic approach to creating versatile, complex polycyclic frameworks. Herein we describe a general organophotoredox approach for the chemo- and regioselective dearomatization of structurally diverse polycyclic aromatics, including quinolines, isoquinolines, quinoxalines, naphthalenes, anthracenes and phenanthrenes. The success of the method for chemoselective oxidative rupture of aromatic moieties relies on precise manipulation of the electronic nature of the fused polycyclic arenes. Mechanistic studies show that the addition of a hydrogen atom transfer (HAT) agent helps favor the dearomatization pathway over the more thermodynamically downhill aromatization pathway. We show that this strategy can be applied to rapid synthesis of biologically valued targets and late-stage skeletal remodeling en route to complex structures.

 
more » « less
Award ID(s):
1764328 2153972
NSF-PAR ID:
10381694
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Aromatic compounds are one of the most abundant classes of organic molecules and find utility as precursors for alicyclic hydrocarbon building blocks. While many established dearomatization reactions are exceptionally powerful, dearomatization with concurrent introduction of functionality, i.e. dearomative functionalization, is still a largely underdeveloped field. This review aims to provide an overview of our recent efforts and progress in the development of dearomative functionalization of simple and nonactivated arenes using arenophile-arene cycloaddition platform. These cycloadducts, formed via a visible-light-mediated [4+2]-photocycloaddition, can be elaborated in situ through olefin chemistry or transition-metal-catalyzed ring-opening with carbon-, nitrogen-, and oxygen-based nucleophiles, providing access to diverse structures with functional and stereochemical complexity. Moreover, the dearomatized products are amenable to further elaborations, which effectively install other functionalities onto the resulting alicyclic carbocycles. The utility of the arenophile-mediated dearomatization methods are also highlighted by the facile syntheses of natural products and bioactive compounds through novel disconnections. 
    more » « less
  2. Abstract Catalytic asymmetric dearomatization (CADA) is a powerful tool for the rapid construction of diverse chiral cyclic molecules from cheap and easily available arenes. This work reports an organocatalytic enantioselective dearomatization of substituted thiophenes in the context of a rare remote asymmetric 1,10-conjugate addition. By suitable stabilization of the thiophenyl carbocation with an indole motif in the form of indole imine methide, excellent remote chemo-, regio-, and stereocontrol in the nucleophilic addition can be achieved with chiral phosphoric acid catalysis under mild conditions. This protocol can be successfully extended to the asymmetric dearomatization of other heteroarenes including selenophenes and furans. Control experiments and DFT calculations demonstrate a possible pathway in which hydrogen bonding plays an important role in selectivity control. 
    more » « less
  3. Abstract

    The functionalization of polycyclic aromatic hydrocarbons (PAHs) via B←N Lewis pair formation offers an opportunity to judiciously fine‐tune the structural features and optoelectronic properties, to suit the demands of applications in organic electronic devices, bioimaging, and as sensitizers for singlet oxygen generation. We demonstrate that the N‐directed electrophilic borylation of 2,6‐di(pyrid‐2‐yl)anthracene offers access to linearly extended acene derivativesPy‐BR(R=Et, Ph, C6F5). In comparison to indeno‐fused 9,10‐diphenylanthracene, the formal “BN for CC” replacement inPy‐BRselectively lowers the LUMO, resulting in a much reduced HOMO–LUMO gap. An even more extended conjugated system with seven six‐membered rings in a row (Qu‐BEt) is obtained by borylation of 2,6‐di(quinolin‐8‐yl)anthracene. FluorinatedPy‐BPfshows particularly advantageous properties, including relatively lower‐lying HOMO and LUMO levels, strong yellow‐green fluorescence, and effective singlet oxygen sensitization, while resisting self‐sensitized conversion to its endoperoxide.

     
    more » « less
  4. Abstract

    The functionalization of polycyclic aromatic hydrocarbons (PAHs) via B←N Lewis pair formation offers an opportunity to judiciously fine‐tune the structural features and optoelectronic properties, to suit the demands of applications in organic electronic devices, bioimaging, and as sensitizers for singlet oxygen generation. We demonstrate that the N‐directed electrophilic borylation of 2,6‐di(pyrid‐2‐yl)anthracene offers access to linearly extended acene derivativesPy‐BR(R=Et, Ph, C6F5). In comparison to indeno‐fused 9,10‐diphenylanthracene, the formal “BN for CC” replacement inPy‐BRselectively lowers the LUMO, resulting in a much reduced HOMO–LUMO gap. An even more extended conjugated system with seven six‐membered rings in a row (Qu‐BEt) is obtained by borylation of 2,6‐di(quinolin‐8‐yl)anthracene. FluorinatedPy‐BPfshows particularly advantageous properties, including relatively lower‐lying HOMO and LUMO levels, strong yellow‐green fluorescence, and effective singlet oxygen sensitization, while resisting self‐sensitized conversion to its endoperoxide.

     
    more » « less
  5. Abstract

    The fusion of tetrapyrroles with aromatic heterocycles constitutes a useful tool for manipulating their opto‐electronic properties. In this work, the synthesis of naphthodithiophene‐fused porphyrins was achieved through a Heck reaction‐based cascade of steps followed by the Scholl reaction. The naphthodithiophene‐fused porphyrins display a unique set of optical and electronic properties. Fusion of the naphtho[2,1‐b:3,4‐b’]dithiophene to porphyrin (F2VTP) leads to a ~20% increase in the fluorescence lifetime, which is accompanied, unexpectedly, by a more than two‐fold drop in the emission quantum yield (ϕ=0.018). In contrast, fusion of the isomeric naphtho[1,2‐b:4,3‐b’]dithiophene to porphyrin (F3VPT)results in a ~1.5‐fold increase in the fluorescence quantum yield (ϕ=0.13) with a concomitant ~30 % increase in the fluorescence lifetime. This behavior suggests that fusion of the porphyrin with the naphthodithiopheno‐system mainly affects the radiative rate constant in the Q‐state deactivation pathway, where the effects of the isomeric naphtho[2,1‐b:3,4‐b’]dithiophene‐ versus naphtho[1,2‐b:4,3‐b’]dithiophene‐fusion are essentially the opposite. Interestingly, nucleus‐independent chemical shifts analysis revealed a considerable difference between the aromaticities of these two isomeric systems. Our results demonstrate that subtle structural differences in the fused components of the porphyrin can be reflected in rather significant differences between the photophysical properties of the resulting systems.

     
    more » « less