skip to main content

Title: Selective skeletal editing of polycyclic arenes using organophotoredox dearomative functionalization
Abstract

Reactions that lead to destruction of aromatic ring systems often require harsh conditions and, thus, take place with poor selectivities. Selective partial dearomatization of fused arenes is even more challenging but can be a strategic approach to creating versatile, complex polycyclic frameworks. Herein we describe a general organophotoredox approach for the chemo- and regioselective dearomatization of structurally diverse polycyclic aromatics, including quinolines, isoquinolines, quinoxalines, naphthalenes, anthracenes and phenanthrenes. The success of the method for chemoselective oxidative rupture of aromatic moieties relies on precise manipulation of the electronic nature of the fused polycyclic arenes. Mechanistic studies show that the addition of a hydrogen atom transfer (HAT) agent helps favor the dearomatization pathway over the more thermodynamically downhill aromatization pathway. We show that this strategy can be applied to rapid synthesis of biologically valued targets and late-stage skeletal remodeling en route to complex structures.

Authors:
; ; ; ; ; ; ;
Publication Date:
NSF-PAR ID:
10381694
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Aromatic compounds are one of the most abundant classes of organic molecules and find utility as precursors for alicyclic hydrocarbon building blocks. While many established dearomatization reactions are exceptionally powerful, dearomatization with concurrent introduction of functionality, i.e. dearomative functionalization, is still a largely underdeveloped field. This review aims to provide an overview of our recent efforts and progress in the development of dearomative functionalization of simple and nonactivated arenes using arenophile-arene cycloaddition platform. These cycloadducts, formed via a visible-light-mediated [4+2]-photocycloaddition, can be elaborated in situ through olefin chemistry or transition-metal-catalyzed ring-opening with carbon-, nitrogen-, and oxygen-based nucleophiles, providing access to diverse structures with functional and stereochemical complexity. Moreover, the dearomatized products are amenable to further elaborations, which effectively install other functionalities onto the resulting alicyclic carbocycles. The utility of the arenophile-mediated dearomatization methods are also highlighted by the facile syntheses of natural products and bioactive compounds through novel disconnections.
  2. Abstract Catalytic asymmetric dearomatization (CADA) is a powerful tool for the rapid construction of diverse chiral cyclic molecules from cheap and easily available arenes. This work reports an organocatalytic enantioselective dearomatization of substituted thiophenes in the context of a rare remote asymmetric 1,10-conjugate addition. By suitable stabilization of the thiophenyl carbocation with an indole motif in the form of indole imine methide, excellent remote chemo-, regio-, and stereocontrol in the nucleophilic addition can be achieved with chiral phosphoric acid catalysis under mild conditions. This protocol can be successfully extended to the asymmetric dearomatization of other heteroarenes including selenophenes and furans. Control experiments and DFT calculations demonstrate a possible pathway in which hydrogen bonding plays an important role in selectivity control.
  3. Abstract

    A dearomatization-dislocation-coupling cascade rapidly transforms aromatic isocyanides into highly functionalized cyclohexadienes. The facile cascade installs an exceptional degree of molecular complexity: three carbon-carbon bonds, two quaternary stereocenters, and three orthogonal functionalities, a cyclohexadiene, a nitrile, and an isocyanide. The tolerance of arylisocyanides makes the method among the mildest dearomatizations ever reported, typically occurring within minutes at −78 °C. Experimental and computational analyses implicate an electron transfer-initiated mechanism involving an unprecedented isocyanide rearrangement followed by radical-radical anion coupling. The dearomatization is fast, proceeds via a complex cascade mechanism supported by experimental and computational insight, and provides complex, synthetically valuable cyclohexadienes.

  4. Rappe, Michael S. (Ed.)
    ABSTRACT Bacterial biodegradation is a significant contributor to remineralization of polycyclic aromatic hydrocarbons (PAHs)—toxic and recalcitrant components of crude oil as well as by-products of partial combustion chronically introduced into seawater via atmospheric deposition. The Deepwater Horizon oil spill demonstrated the speed at which a seed PAH-degrading community maintained by chronic inputs responds to acute pollution. We investigated the diversity and functional potential of a similar seed community in the chronically polluted Port of Los Angeles (POLA), using stable isotope probing with naphthalene, deep-sequenced metagenomes, and carbon incorporation rate measurements at the port and in two sites in the San Pedro Channel. We demonstrate the ability of the community of degraders at the POLA to incorporate carbon from naphthalene, leading to a quick shift in microbial community composition to be dominated by the normally rare Colwellia and Cycloclasticus . We show that metagenome-assembled genomes (MAGs) belonged to these naphthalene degraders by matching their 16S-rRNA gene with experimental stable isotope probing data. Surprisingly, we did not find a full PAH degradation pathway in those genomes, even when combining genes from the entire microbial community, leading us to hypothesize that promiscuous dehydrogenases replace canonical naphthalene degradation enzymes in this site. We comparedmore »metabolic pathways identified in 29 genomes whose abundance increased in the presence of naphthalene to generate genomic-based recommendations for future optimization of PAH bioremediation at the POLA, e.g., ammonium as opposed to urea, heme or hemoproteins as an iron source, and polar amino acids. IMPORTANCE Oil spills in the marine environment have a devastating effect on marine life and biogeochemical cycles through bioaccumulation of toxic hydrocarbons and oxygen depletion by hydrocarbon-degrading bacteria. Oil-degrading bacteria occur naturally in the ocean, especially where they are supported by chronic inputs of oil or other organic carbon sources, and have a significant role in degradation of oil spills. Polycyclic aromatic hydrocarbons are the most persistent and toxic component of crude oil. Therefore, the bacteria that can break those molecules down are of particular importance. We identified such bacteria at the Port of Los Angeles (POLA), one of the busiest ports worldwide, and characterized their metabolic capabilities. We propose chemical targets based on those analyses to stimulate the activity of these bacteria in case of an oil spill in the Port POLA.« less
  5. Soils harbor complex biological processes intertwined with metabolic inputs from microbes and plants. Measuring the soil metabolome can reveal active metabolic pathways, providing insight into the presence of specific organisms and ecological interactions. A subset of the metabolome is volatile; however, current soil studies rarely consider volatile organic compounds (VOCs), contributing to biases in sample processing and metabolomic analytical techniques. Therefore, we hypothesize that overall, the volatility of detected compounds measured using current metabolomic analytical techniques will be lower than undetected compounds, a reflection of missed VOCs. To illustrate this, we examined a peatland metabolomic dataset collected using three common metabolomic analytical techniques: nuclear magnetic resonance (NMR), gas chromatography-mass spectroscopy (GC-MS), and fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). We mapped the compounds to three metabolic pathways (monoterpenoid biosynthesis, diterpenoid biosynthesis, and polycyclic aromatic hydrocarbon degradation), chosen for their activity in peatland ecosystems and involvement of VOCs. We estimated the volatility of the compounds by calculating relative volatility indices (RVIs), and as hypothesized, the average RVI of undetected compounds within each of our focal pathways was higher than detected compounds ( p < 0.001). Moreover, higher RVI compounds were absent even in sub-pathways where lower RVI compounds were observed. Ourmore »findings suggest that typical soil metabolomic analytical techniques may overlook VOCs and leave missing links in metabolic pathways. To more completely represent the volatile fraction of the soil metabolome, we suggest that environmental scientists take into consideration these biases when designing and interpreting their data and/or add direct online measurement methods that capture the integral role of VOCs in soil systems.« less