Abstract Control over the stereochemistry of excited-state photoreactions remains a significant challenge in organic synthesis. Recently, it has become recognized that the photophysical properties of simple organic substrates can be altered upon coordination to Lewis acid catalysts, and that these changes can be exploited in the design of highly enantioselective catalytic photoreactions. Chromophore activation strategies, wherein simple organic substrates are activated towards photoexcitation upon binding to a Lewis acid catalyst, rank among the most successful asymmetric photoreactions. Herein, we show that chiral Brønsted acids can also catalyze asymmetric excited-state photoreactions by chromophore activation. This principle is demonstrated in the context of a highly enantio- and diastereoselective [2+2] photocycloaddition catalyzed by a chiral phosphoramide organocatalyst. Notably, the cyclobutane products arising from this method feature atrans-cisstereochemistry that is complementary to other enantioselective catalytic [2+2] photocycloadditions reported to date.
more »
« less
Total Synthesis of (+)‐Cochlearol B by an Approach Based on a Catellani Reaction and Visible‐Light‐Enabled [2+2] Cycloaddition**
Abstract A 14‐step synthesis of (+)‐cochlearol B is reported. This renoprotective meroterpenoid features a unique core structure containing a densely substituted cyclobutane ring with three stereocenters. Our strategy employed an organocatalytic Kabbe condensation in route to the key chromenyl triflate. A subsequent Catellani reaction incorporated the remaining carbon atoms featured in the skeleton of cochlearol B. An ensuing visible‐light‐mediated [2+2] photocycloaddition closed the cyclobutane and formed the central bicyclo[3.2.0]heptane core. Notably, careful design and tuning of the Catellani and photocycloaddition reactions proved crucial in overcoming undesired reactivity, including cyclopropanation reactions and [4+2] cycloadditions.
more »
« less
- Award ID(s):
- 1654223
- PAR ID:
- 10374641
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 61
- Issue:
- 31
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract B←N coordination supports a [2+2] photodimerization in the solid state. The bond is defined by an orthogonal interaction between stilbazole and a phenylboronic ester to enable a stereocontrolled and rapid photoreaction. The cyclobutane photoproduct affords a novel diboron bis‐tweezer adduct that is used to separate a mixture of benzene and thiophene upon crystallization.more » « less
-
Abstract We describe a templating/covalent capture strategy that enables photochemical formation of 8 cyclobutanes in one noncovalent assembly. This process was characterized by experiment and quantum mechanical/molecular mechanics (ONIOM) calculations. Thus, KI and 16 units of 5′‐cinnamate guanosine form a G‐quadruplex where C=C π bonds in neighboring G4‐quartets are separated by 3.3 Å, enabling [2+2] photocycloaddition in solution. This reaction is high‐yielding (>90 %), regio‐ and diastereoselective. Since all components are in dynamic equilibrium this photocycloaddition is catalytic in K+.more » « less
-
Small differences in molecular or solid-state structure can afford significant differences in properties. Here, a diene derivative, 1,3-bis((E)-2-bromostyryl)benzene (2Brm), is synthesized and crystallized into two unique solid-state forms, each exhibiting a different π–π stacking geometry, which imparts distinct reactivity and photoresponsivity. Upon exposure of the two solids to UV–Vis light, a [2 + 2] photocycloaddition occurs to afford regioisomeric products due to the difference in the stacking geometries of the dienes. From a single molecular precursor, we further demonstrate that under different wavelengths of light, the chemical functionality can be programmed into discrete and distinct products containing one, two, or three cyclobutane rings as well as oligomeric/polymeric products. Moreover, the two initial solid forms exhibit wavelength-dependent photomechanical behaviors (i.e., photosalience). This work demonstrates a rare, template-free, self-assembly-based strategy that enables access to a suite of discrete and oligomeric/polymeric products via regiocontrolled solid-state photocycloadditions and further presents potential routes toward the design of photoactuating materials.more » « less
-
Abstract The [2+2] photocycloaddition (PCA [2+2]) of alkenes is one of the most synthetically useful photoreactions. It is a convenient one‐step reaction that is useful for generating substituted cyclobutanes, polymers, and biologically relevant molecules. However, the reaction efficiency is limited by its bimolecular nature requiring encounter between two reactants within the narrow window of excited state lifetime of the photoactive alkene, and competition from the unimolecular photoisomerization. Our groups have utilized macrocyclic cavitands, especially cucurbiturils(CB), to confine two alkene molecules within their cavities and steer them towards a single dimer regio‐ and stereoselectively. Although, primarily the review focuses on photocycloaddition within CBs, such reactions in closely related cavitands such as cyclodextrins (CD) and calixarenes (CA) are also briefly mentioned to provide a comparison with CBs. Studies on photocycloaddition of olefins within CB by other research groups are also briefly highlighted. A mechanistic model, with ability to predict the nature of the dimer product formed within the above reaction containers is included.more » « less
An official website of the United States government
