skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Monocularly Generated 3D High Level Semantic Model by Integrating Deep Learning Models and Traditional Vision Techniques
Scene reconstruction using Monodepth2 (Monocular Depth Inference) which provides depth maps from a single RGB camera, the outputs are filled with noise and inconsistencies. Instance segmentation using a Mask R-CNN (Region Based Convolution Neural Networks) deep model can provide object segmentation results in 2D but lacks 3D information. In this paper we propose to integrate the results of Instance segmentation via Mask R-CNN’s, CAD model Car Shape Alignment, and depth from Monodepth2 together with classical dynamic vision techniques to create a High-level Semantic Model with separability, robustness, consistency and saliency. The model is useful for both virtualized rendering, semantic augmented reality and automatic driving. Experimental results are provided to validate the approach.  more » « less
Award ID(s):
1827505 1737533
PAR ID:
10346691
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2021 IEEE International Conference on Imaging Systems and Techniques (IST)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Contemporary approaches to instance segmentation in cell science use 2D or 3D convolutional networks depending on the experiment and data structures. However, limitations in microscopy systems or efforts to prevent phototoxicity commonly require recording sub-optimally sampled data that greatly reduces the utility of such 3D data, especially in crowded sample space with significant axial overlap between objects. In such regimes, 2D segmentations are both more reliable for cell morphology and easier to annotate. In this work, we propose the projection enhancement network (PEN), a novel convolutional module which processes the sub-sampled 3D data and produces a 2D RGB semantic compression, and is trained in conjunction with an instance segmentation network of choice to produce 2D segmentations. Our approach combines augmentation to increase cell density using a low-density cell image dataset to train PEN, and curated datasets to evaluate PEN. We show that with PEN, the learned semantic representation in CellPose encodes depth and greatly improves segmentation performance in comparison to maximum intensity projection images as input, but does not similarly aid segmentation in region-based networks like Mask-RCNN. Finally, we dissect the segmentation strength against cell density of PEN with CellPose on disseminated cells from side-by-side spheroids. We present PEN as a data-driven solution to form compressed representations of 3D data that improve 2D segmentations from instance segmentation networks. 
    more » « less
  2. Sketch-to-image is an important task to reduce the burden of creating a color image from scratch. Unlike previous sketch-to-image models, where the image is synthesized in an end-to-end manner, leading to an unnaturalistic image, we propose a method by decomposing the problem into subproblems to generate a more naturalistic and reasonable image. It first generates an intermediate output which is a semantic mask map from the input sketch through instance and semantic segmentation in two levels, background segmentation and foreground segmentation. Background segmentation is formed based on the context of the foreground objects. Then, the foreground segmentations are sequentially added to the created background segmentation. Finally, the generated mask map is fed into an image-to-image translation model to generate an image. Our proposed method works with 92 distinct classes. Compared to state-of-the-art sketch-to-image models, our proposed method outperforms the previous methods and generates better images. 
    more » « less
  3. In this paper, we present an end-to-end instance segmentation method that regresses a polygonal boundary for each object instance. This sparse, vectorized boundary representation for objects, while attractive in many downstream computer vision tasks, quickly runs into issues of parity that need to be addressed: parity in supervision and parity in performance when compared to existing pixel-based methods. This is due in part to object instances being annotated with ground-truth in the form of polygonal boundaries or segmentation masks, yet being evaluated in a convenient manner using only segmentation masks. Our method, BoundaryFormer, is a Transformer based architecture that directly predicts polygons yet uses instance mask segmentations as the ground-truth supervision for computing the loss. We achieve this by developing an end-to-end differentiable model that solely relies on supervision within the mask space through differentiable rasterization. BoundaryFormer matches or surpasses the Mask R-CNN method in terms of instance segmentation quality on both COCO and Cityscapes while exhibiting significantly better transferability across datasets. 
    more » « less
  4. Sketch-to-image synthesis method transforms a simple abstract black-and-white sketch into an image. Most sketch-to-image synthesis methods generate an image in an end-to-end manner, leading to generate a non-satisfactory result. The reason is that, in end-to-end models, the models generate images directly from the input sketches. Thus, with very abstract and complicated sketches, the models might struggle in generating naturalistic images due to the simultaneous focus on both factors: overall shape and fine-grained details. In this paper, we propose to divide the problem into subproblems. To this end, an intermediate output, which is a semantic mask map, is first generated from the input sketch via an instance and semantic segmentation. In the instance segmentation stage, the objects' sizes might be modified depending on the surrounding environment and their respective size prior to reflect reality and produce more realistic images. In the semantic seg-mentation stage, a background segmentation is first constructed based on the context of the detected objects. Various natural scenes are implemented for both indoor and outdoor scenes. Following this, a foreground segmentation process is commenced, where each detected object is semantically added into the constructed segmented background. Then, in the next stage, an image-to-image translation model is leveraged to convert the semantic mask map into a colored image. Finally, a post-processing stage is incorporated to further enhance the image result. Extensive experiments demonstrate the superiority of our proposed method over state-of-the-art methods. 
    more » « less
  5. Cracks of civil infrastructures, including bridges, dams, roads, and skyscrapers, potentially reduce local stiffness and cause material discontinuities, so as to lose their designed functions and threaten public safety. This inevitable process signifier urgent maintenance issues. Early detection can take preventive measures to prevent damage and possible failure. With the increasing size of image data, machine/deep learning based method have become an important branch in detecting cracks from images. This study is to build an automatic crack detector using the state-of-the-art technique referred to as Mask Regional Convolution Neural Network (R-CNN), which is kind of deep learning. Mask R-CNN technique is a recently proposed algorithm not only for object detection and object localization but also for object instance segmentation of natural images. It is found that the built crack detector is able to perform highly effective and efficient automatic segmentation of a wide range of images of cracks. In addition, this proposed automatic detector could work on videos as well; indicating that this detector based on Mask R-CNN provides a robust and feasible ability on detecting cracks exist and their shapes in real time on-site. 
    more » « less