skip to main content


Title: Openness weighted association studies: leveraging personal genome information to prioritize non-coding variants
Abstract Motivation Identification and interpretation of non-coding variations that affect disease risk remain a paramount challenge in genome-wide association studies (GWAS) of complex diseases. Experimental efforts have provided comprehensive annotations of functional elements in the human genome. On the other hand, advances in computational biology, especially machine learning approaches, have facilitated accurate predictions of cell-type-specific functional annotations. Integrating functional annotations with GWAS signals has advanced the understanding of disease mechanisms. In previous studies, functional annotations were treated as static of a genomic region, ignoring potential functional differences imposed by different genotypes across individuals. Results We develop a computational approach, Openness Weighted Association Studies (OWAS), to leverage and aggregate predictions of chromosome accessibility in personal genomes for prioritizing GWAS signals. The approach relies on an analytical expression we derived for identifying disease associated genomic segments whose effects in the etiology of complex diseases are evaluated. In extensive simulations and real data analysis, OWAS identifies genes/segments that explain more heritability than existing methods, and has a better replication rate in independent cohorts than GWAS. Moreover, the identified genes/segments show tissue-specific patterns and are enriched in disease relevant pathways. We use rheumatic arthritis and asthma as examples to demonstrate how OWAS can be exploited to provide novel insights on complex diseases. Availability and implementation The R package OWAS that implements our method is available at https://github.com/shuangsong0110/OWAS. Supplementary information Supplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
1903139 2015411
NSF-PAR ID:
10346750
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Schwartz, Russell
Date Published:
Journal Name:
Bioinformatics
Volume:
37
Issue:
24
ISSN:
1367-4803
Page Range / eLocation ID:
4737 to 4743
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. INTRODUCTION Thousands of genetic variants have been associated with human diseases and traits through genome-wide association studies (GWASs). Translating these discoveries into improved therapeutics requires discerning which variants among hundreds of candidates are causally related to disease risk. To date, only a handful of causal variants have been confirmed. Here, we leverage 100 million years of mammalian evolution to address this major challenge. RATIONALE We compared genomes from hundreds of mammals and identified bases with unusually few variants (evolutionarily constrained). Constraint is a measure of functional importance that is agnostic to cell type or developmental stage. It can be applied to investigate any heritable disease or trait and is complementary to resources using cell type– and time point–specific functional assays like Encyclopedia of DNA Elements (ENCODE) and Genotype-Tissue Expression (GTEx). RESULTS Using constraint calculated across placental mammals, 3.3% of bases in the human genome are significantly constrained, including 57.6% of coding bases. Most constrained bases (80.7%) are noncoding. Common variants (allele frequency ≥ 5%) and low-frequency variants (0.5% ≤ allele frequency < 5%) are depleted for constrained bases (1.85 versus 3.26% expected by chance, P < 2.2 × 10 −308 ). Pathogenic ClinVar variants are more constrained than benign variants ( P < 2.2 × 10 −16 ). The most constrained common variants are more enriched for disease single-nucleotide polymorphism (SNP)–heritability in 63 independent GWASs. The enrichment of SNP-heritability in constrained regions is greater (7.8-fold) than previously reported in mammals and is even higher in primates (11.1-fold). It exceeds the enrichment of SNP-heritability in nonsynonymous coding variants (7.2-fold) and fine-mapped expression quantitative trait loci (eQTL)–SNPs (4.8-fold). The enrichment peaks near constrained bases, with a log-linear decrease of SNP-heritability enrichment as a function of the distance to a constrained base. Zoonomia constraint scores improve functionally informed fine-mapping. Variants at sites constrained in mammals and primates have greater posterior inclusion probabilities and higher per-SNP contributions. In addition, using both constraint and functional annotations improves polygenic risk score accuracy across a range of traits. Finally, incorporating constraint information into the analysis of noncoding somatic variants in medulloblastomas identifies new candidate driver genes. CONCLUSION Genome-wide measures of evolutionary constraint can help discern which variants are functionally important. This information may accelerate the translation of genomic discoveries into the biological, clinical, and therapeutic knowledge that is required to understand and treat human disease. Using evolutionary constraint in genomic studies of human diseases. ( A ) Constraint was calculated across 240 mammal species, including 43 primates (teal line). ( B ) Pathogenic ClinVar variants ( N = 73,885) are more constrained across mammals than benign variants ( N = 231,642; P < 2.2 × 10 −16 ). ( C ) More-constrained bases are more enriched for trait-associated variants (63 GWASs). ( D ) Enrichment of heritability is higher in constrained regions than in functional annotations (left), even in a joint model with 106 annotations (right). ( E ) Fine-mapping (PolyFun) using a model that includes constraint scores identifies an experimentally validated association at rs1421085. Error bars represent 95% confidence intervals. BMI, body mass index; LF, low frequency; PIP, posterior inclusion probability. 
    more » « less
  2. Abstract

    Genome‐wide association studies (GWAS) have successfully identified thousands of genetic variants contributing to disease and other phenotypes. However, significant obstacles hamper our ability to elucidate causal variants, identify genes affected by causal variants, and characterize the mechanisms by which genotypes influence phenotypes. The increasing availability of genome‐wide functional annotation data is providing unique opportunities to incorporate prior information into the analysis of GWAS to better understand the impact of variants on disease etiology. Although there have been many advances in incorporating prior information into prioritization of trait‐associated variants in GWAS, functional annotation data have played a secondary role in the joint analysis of GWAS and molecular (i.e., expression) quantitative trait loci (eQTL) data in assessing evidence for association. To address this, we develop a novel mediation framework,iFunMed, to integrate GWAS and eQTL data with the utilization of publicly available functional annotation data.iFunMedextends the scope of standard mediation analysis by incorporating information from multiple genetic variants at a time and leveraging variant‐level summary statistics. Data‐driven computational experiments convey how informative annotations improve single‐nucleotide polymorphism (SNP) selection performance while emphasizing robustness ofiFunMedto noninformative annotations. Application to Framingham Heart Study data indicates thatiFunMedis able to boost detection of SNPs with mediation effects that can be attributed to regulatory mechanisms.

     
    more » « less
  3. Abstract

    Genetic association signals have been mostly found in noncoding regions through genome-wide association studies (GWAS), suggesting the roles of gene expression regulation in human diseases and traits. However, there has been limited success in colocalizing expression quantitative trait locus (eQTL) with disease-associated variants. Mediated expression score regression (MESC) is a recently proposed method to quantify the proportion of trait heritability mediated by genetically regulated gene expressions (GReX). Applications of MESC to GWAS results have yielded low estimation of mediated heritability for many traits. As MESC relies on stringent independence assumptions between cis-eQTL effects, gene effects, and nonmediated SNP effects, it may fail to characterize the true relationships between those effect sizes, which leads to biased results. Here, we consider the robustness of MESC to investigate whether the low fraction of mediated heritability inferred by MESC reflects biological reality for complex traits or is an underestimation caused by model misspecifications. Our results suggest that MESC may lead to biased estimates of mediated heritability with misspecification of gene annotations leading to underestimation, whereas misspecification of SNP annotations may lead to overestimation. Furthermore, errors in eQTL effect estimates may lead to underestimation of mediated heritability.

     
    more » « less
  4. null (Ed.)
    Selective serotonin reuptake inhibitors (SSRIs) are a standard of care for the pharmacotherapy of patients suffering from Major Depressive Disorder (MDD). However, only one-half to two-thirds of MDD patients respond to SSRI therapy. Recently, a “multiple omics” research strategy was applied to identify genetic differences between patients who did and did not respond to SSRI therapy. As a first step, plasma metabolites were assayed using samples from the 803 patients in the PGRN-AMPS SSRI MDD trial. The metabolomics data were then used to “inform” genomics by performing a genome-wide association study (GWAS) for plasma concentrations of the metabolite most highly associated with clinical response, serotonin (5-HT). Two genome-wide or near genome-wide significant single nucleotide polymorphism (SNP) signals were identified, one that mapped near the TSPAN5 gene and another across the ERICH3 gene, both genes that are highly expressed in the brain. Knocking down TSPAN5 and ERICH3 resulted in decreased 5-HT concentrations in neuroblastoma cell culture media and decreased expression of enzymes involved in 5-HT biosynthesis and metabolism. Functional genomic studies demonstrated that ERICH3 was involved in clathrin-mediated vesicle formation and TSPAN5 was an ethanol-responsive gene that may be a marker for response to acamprosate pharmacotherapy of alcohol use disorder (AUD), a neuropsychiatric disorder highly co-morbid with MDD. In parallel studies, kynurenine was the plasma metabolite most highly associated with MDD symptom severity and application of a metabolomics-informed pharmacogenomics approach identified DEFB1 and AHR as genes associated with variation in plasma kynurenine levels. Both genes also contributed to kynurenine-related inflammatory pathways. Finally, a multiply replicated predictive algorithm for SSRI clinical response with a balanced predictive accuracy of 76% (compared with 56% for clinical data alone) was developed by including the SNPs in TSPAN5 , ERICH3 , DEFB1 and AHR . In summary, application of a multiple omics research strategy that used metabolomics to inform genomics, followed by functional genomic studies, identified novel genes that influenced monoamine biology and made it possible to develop a predictive algorithm for SSRI clinical outcomes in MDD. A similar pharmaco-omic research strategy might be broadly applicable for the study of other neuropsychiatric diseases and their drug therapy. 
    more » « less
  5. Abstract Motivation

    Alternative splicing generates multiple isoforms from a single gene, greatly increasing the functional diversity of a genome. Although gene functions have been well studied, little is known about the specific functions of isoforms, making accurate prediction of isoform functions highly desirable. However, the existing approaches to predicting isoform functions are far from satisfactory due to at least two reasons: (i) unlike genes, isoform-level functional annotations are scarce. (ii) The information of isoform functions is concealed in various types of data including isoform sequences, co-expression relationship among isoforms, etc.

    Results

    In this study, we present a novel approach, DIFFUSE (Deep learning-based prediction of IsoForm FUnctions from Sequences and Expression), to predict isoform functions. To integrate various types of data, our approach adopts a hybrid framework by first using a deep neural network (DNN) to predict the functions of isoforms from their genomic sequences and then refining the prediction using a conditional random field (CRF) based on co-expression relationship. To overcome the lack of isoform-level ground truth labels, we further propose an iterative semi-supervised learning algorithm to train both the DNN and CRF together. Our extensive computational experiments demonstrate that DIFFUSE could effectively predict the functions of isoforms and genes. It achieves an average area under the receiver operating characteristics curve of 0.840 and area under the precision–recall curve of 0.581 over 4184 GO functional categories, which are significantly higher than the state-of-the-art methods. We further validate the prediction results by analyzing the correlation between functional similarity, sequence similarity, expression similarity and structural similarity, as well as the consistency between the predicted functions and some well-studied functional features of isoform sequences.

    Availability and implementation

    https://github.com/haochenucr/DIFFUSE.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less