skip to main content


Title: Monolithic Integration of Si3N4 Ring Resonator and On-Chip Fourier Transform Spectrometer for The Lab-On-A-Chip Biosensor
We demonstrated the monolithically integrated biosensor with micro-ring-resonator (MRR) and spatial-heterodyne Fourier-transform-spectrometer (SH-FTS) on Si3N4-on-SiO2, substituting the external optical spectrum analyzer. The spectrum is retrieved from SH-FTS with the bulk sensitivity of 42.9 nm/RIU.  more » « less
Award ID(s):
1932753
NSF-PAR ID:
10346766
Author(s) / Creator(s):
;
Editor(s):
Jiang, Wei; Alan Wang
Date Published:
Journal Name:
Cleo
ISSN:
0928-9062
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We define the Chow t-structure on the ∞-category of motivic spectra SH(k) over an arbitrary base field k. We identify the heart of this t-structure SH(k)c♡ when the exponential characteristic of k is inverted. Restricting to the cellular subcategory, we identify the Chow heart SH(k)cell,c♡ as the category of even graded MU2∗MU-comodules. Furthermore, we show that the ∞-category of modules over the Chow truncated sphere spectrum 1c=0 is algebraic. Our results generalize the ones in Gheorghe–Wang–Xu in three aspects: to integral results; to all base fields other than just C; to the entire ∞-category of motivic spectra SH(k), rather than a subcategory containing only certain cellular objects. We also discuss a strategy for computing motivic stable homotopy groups of (p-completed) spheres over an arbitrary base field k using the Postnikov–Whitehead tower associated to the Chow t-structure and the motivic Adams spectral sequences over k. 
    more » « less
  2. Abstract Background The opioid epidemic has caused an increase in overdose deaths which can be attributed to fentanyl combined with various illicit substances. Drug checking programs have been started by many harm reduction groups to provide tools for users to determine the composition of their street drugs. Immunoassay fentanyl test strips (FTS) allow users to test drugs for fentanyl by either filling a baggie or cooker with water to dissolve the sample and test. The antibody used in FTS is very selective for fentanyl at high dilutions, a characteristic of the traditional use of urine testing. These street sample preparation methods can lead to mg/mL concentrations of several potential interferents. We tested whether these concentrated samples could cause false positive results on a FTS. Methods 20 ng/mL Rapid Response FTS were obtained from BTNX Inc. and tested against 4 different pharmaceuticals (diphenhydramine, alprazolam, gabapentin, and naloxone buprenorphine) and 3 illicit stimulants [cocaine HCl, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA)] in concentrations from 20 to 0.2 mg/mL. The FTS testing pad is divided into 2 sections: the control area and the test area. Control and test area signal intensities were quantified by ImageJ from photographs of the test strips and compared to a threshold set by fentanyl at the FTS limit of detection. Results False positive results indicating the presence of fentanyl were obtained from samples of methamphetamine, MDMA, and diphenhydramine at concentrations at or above 1 mg/mL. Diphenhydramine is a common cutting agent in heroin. The street sample preparation protocols for FTS use suggested by many online resources would produce such concentrations of these materials. Street samples need to be diluted more significantly to avoid interference from potential cutting agents and stimulants. Conclusions Fentanyl test strips are commercially available, successful at detecting fentanyl to the specified limit of detection and can be a valuable tool for harm reduction efforts. Users should be aware that when drugs and adulterants are in high concentrations, FTS can give a false positive result. 
    more » « less
  3. Abstract

    We introduce two novel nonparametric forecasting methods designed for functional time series (FTS), namely, functional singular spectrum analysis (FSSA) recurrent and vector forecasting. Our algorithms rely on extracted signals obtained from the FSSA method and innovative recurrence relations to make predictions. These techniques are model‐free, capable of predicting nonstationary FTS and utilize a computational approach for parameter selection. We also employ a bootstrap algorithm to assess the goodness‐of‐prediction. Through comprehensive evaluations on both simulated and real‐world climate data, we showcase the effectiveness of our techniques compared to various parametric and nonparametric approaches for forecasting nonstationary stochastic processes. Furthermore, we have implemented these methods in theRfssaR package and developed a shiny web application for interactive exploration of the results.

     
    more » « less
  4. Abstract

    We present an ultra-compact single-shot spectrometer on silicon platform for sparse spectrum reconstruction. It consists of 32 stratified waveguide filters (SWFs) with diverse transmission spectra for sampling the unknown spectrum of the input signal and a specially designed ultra-compact structure for splitting the incident signal into those 32 filters with low power imbalance. Each SWF has a footprint less than 1 µm × 30 µm, while the 1 × 32 splitter and 32 filters in total occupy an area of about 35 µm × 260 µm, which to the best of our knowledge, is the smallest footprint spectrometer realized on silicon photonic platform. Experimental characteristics of the fabricated spectrometer demonstrate a broad operating bandwidth of 180 nm centered at 1550 nm and narrowband peaks with 0.45 nm Full-Width-Half-Maximum (FWHM) can be clearly resolved. This concept can also be implemented using other material platforms for operation in optical spectral bands of interest for various applications.

     
    more » « less
  5. Abstract Background

    Fentanyl test strips (FTS) are a commonly deployed tool in drug checking, used to test for the presence of fentanyl in street drug samples prior to consumption. Previous reports indicate that in addition to fentanyl, FTS can also detect fentanyl analogs like acetyl fentanyl and butyryl fentanyl, with conflicting reports on their ability to detect fentanyl analogs like Carfentanil and furanyl fentanyl. Yet with hundreds of known fentanyl analogs, there has been no large-scale study rationalizing FTS reactivity to different fentanyl analogs.

    Methods

    In this study, 251 synthetic opioids—including 214 fentanyl analogs—were screened on two brands of fentanyl test strips to (1) assess the differences in the ability of two brands of fentanyl test strips to detect fentanyl-related compounds and (2) determine which moieties in fentanyl analog chemical structures are most crucial for FTS detection. Two FTS brands were assessed in this study: BTNX Rapid Response and WHPM DanceSafe.

    Results

    Of 251 screened compounds assessed, 121 compounds were detectable at or below 20,000 ng/mL by both BTNX and DanceSafe FTS, 50 were not detectable by either brand, and 80 were detectable by one brand but not the other (n = 52 BTNX,n = 28 DanceSafe). A structural analysis of fentanyl analogs screened revealed that in general, bulky modifications to the phenethyl moiety inhibit detection by BTNX FTS while bulky modifications to the carbonyl moiety inhibit detection by DanceSafe FTS.

    Conclusions

    The different “blind spots” are caused by different haptens used to elicit the antibodies for these different strips. By utilizing both brands of FTS in routine drug checking, users could increase the chances of detecting fentanyl analogs in the “blind spot” of one brand.

     
    more » « less