skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fabrication-tolerant Fourier transform spectrometer on silicon with broad bandwidth and high resolution
We report an advanced Fourier transform spectrometer (FTS) on silicon with significant improvement compared with our previous demonstration in [Nat. Commun.9,665(2018)2041-1723]. We retrieve a broadband spectrum (7 THz around 193 THz) with 0.11 THz or sub nm resolution, more than 3 times higher than previously demonstrated [Nat. Commun.9,665(2018)2041-1723]. Moreover, it effectively solves the issue of fabrication variation in waveguide width, which is a common issue in silicon photonics. The structure is a balanced Mach–Zehnder interferometer with 10 cm long serpentine waveguides. Quasi-continuous optical path difference between the two arms is induced by changing the effective index of one arm using an integrated heater. The serpentine arms utilize wide multi-mode waveguides at the straight sections to reduce propagation loss and narrow single-mode waveguides at the bending sections to keep the footprint compact and avoid modal crosstalk. The reduction of propagation loss leads to higher spectral efficiency, larger dynamic range, and better signal-to-noise ratio. Also, for the first time to our knowledge, we perform a thorough systematic analysis on how the fabrication variation on the waveguide widths can affect its performance. Additionally, we demonstrate that using wide waveguides efficiently leads to a fabrication-tolerant device. This work could further pave the way towards a mature silicon-based FTS operating with both broad bandwidth (over 60 nm) and high resolution suitable for integration with various mobile platforms.  more » « less
Award ID(s):
1901844 1807890 1707641 1640227 1704085
PAR ID:
10132809
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Photonics Research
Volume:
8
Issue:
2
ISSN:
2327-9125
Page Range / eLocation ID:
Article No. 219
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A spatiotemporal optical vortex (STOV) is an intrinsic optical orbital angular momentum (OAM) structure in which the OAM vector is orthogonal to the propagation direction [Optica6,1547(2019)OPTIC82334-253610.1364/OPTICA.6.001547] and the optical phase circulates in space-time. Here, we experimentally and theoretically demonstrate the generation of the second harmonic of a STOV-carrying pulse along with the conservation of STOV-based OAM. Our experiments verify that photons can have intrinsic orbital angular momentum perpendicular to their propagation direction. 
    more » « less
  2. First-fit (FF) is a well-known and widely deployed algorithm for spectrum assignment (SA), but until our recent study [J. Opt. Commun. Netw.14,165(2022)JOCNBB1943-062010.1364/JOCN.445492], investigations of the algorithm had been experimental in nature and no formal properties of the algorithm with respect to SA were known. In this work, we make two contributions. First, we show that FF is auniversalalgorithm for the SA problem in the sense that, for any variant, 1) it can be used to construct solutions equivalent to, or better than, any solution obtained by any other algorithm, and 2) it can construct an optimal solution. This universality property applies to both the min-max and min-frag objectives and to variants of the SA problem with or without guard band constraints. Consequently, the spectrum symmetry-free model of our recent study [J. Opt. Commun. Netw.14,165(2022)JOCNBB1943-062010.1364/JOCN.445492] extends to all known SA variants, which therefore reduce to permutation problems. Second, we extend the spectrum symmetry-free model to the routing and spectrum assignment (RSA) problem in general topologies. This model allows for the design of more efficient algorithms as it eliminates from consideration an exponential number of equivalent symmetric solutions. By sidestepping symmetry, the RSA solution space is naturally and optimally decomposed into a routing space and a connection permutation space. Building upon this property, we introduce a two-parameter, symmetry-freeuniversalalgorithm that can be used to tackle any RSA variant in a uniform manner. The algorithm is amenable to multi-threaded execution to speed up the search process, and the value of the parameters can be adjusted to strike a balance between running time and solution quality. Our evaluation provides insight into the relative benefits of path diversity (which determines the size of the routing space) and connection diversity (which determines the size of the permutation space). 
    more » « less
  3. In Parts I [Appl. Opt.58,6067(2019)APOPAI0003-693510.1364/AO.58.006067] and II [Appl. Opt.61,10049(2022)APOPAI0003-693510.1364/AO.474920], we used a coupled optoelectronic model to optimize a thin-film CIGS solar cell with a graded-bandgap photon-absorbing layer, periodically corrugated backreflector, and multilayered antireflection coatings. Bandgap grading of the CIGS photon-absorbing layer was continuous and either linear or nonlinear, in the thickness direction. Periodic corrugation and multilayered antireflection coatings were found to engender slight improvements in the efficiency. In contrast, bandgap grading of the CIGS photon-absorbing layer leads to significant enhancement of efficiency, especially when the grading is continuous and nonlinear. However, practical implementation of continuous nonlinear grading is challenging compared to piecewise-homogeneous grading. Hence, for this study, we investigated piecewise-homogeneous approximations of the optimal linear and nonlinear grading profiles, and found that an equivalent efficiency is achieved using piecewise-homogeneous grading. An efficiency of 30.15% is predicted with a three-layered piecewise-homogeneous CIGS photon-absorbing layer. The results will help experimentalists to implement optimal designs for highly efficient CIGS thin-film solar cells. 
    more » « less
  4. Using the improved quantitative rescattering (QRS) model, we simulate the correlated two-electron momentum distributions (CMD) for nonsequential double ionization (NSDI) of Ar by near-single-cycle laser pulses with a wavelength of 750 nm at an intensity of 2.8 × 1014W/cm2. With the accurate cross sections obtained from fully quantum mechanical calculations for both electron impact excitation and electron impact ionization of Ar+, we unambiguously identify the contributions from recollision direct ionization (RDI) and recollision excitation with subsequent ionization (RESI). Our analysis reveals that RESI constitutes the main contribution to NSDI of Ar under the conditions considered here. The simulated results are directly compared with experimental measurements [Bergueset al.,Nat. Commun.3,813(2012)10.1038/ncomms1807] in which each NSDI event is tagged with the carrier-envelope phase (CEP). It is found that the overall pattern of both the CEP-resolved and the CEP-averaged CMDs measured in experiment are well reproduced by the QRS model, and the cross-shaped structure in the CEP-averaged CMD is attributed to the strong forward scattering of the recolliding electron as well as the depletion effect in tunneling ionization of the electron from an excited state of the parent ion. 
    more » « less
  5. The breakdown of a Mott-insulator when subjected to intense laser fields is characterized by the formation of doublon-hole pairs. This breakdown is furthermore evidenced by the production of high harmonics that can be experimentally measured. Here, we present an approach for extracting the doublon-hole correlation length of a Mott insulator. The method is based on a dynamical calculation of the Mott insulator’s rate of charge production in response to an applied strong-field laser pulse. We find that coupling the Mott insulator to a metal drastically increases the correlation length, in support of our recent hypothesis [Phys. Rev. B108,144434(2023)2469-995010.1103/PhysRevB.108.144434] that coupling to a metal enhances the charge fluctuations in the insulator. We confirm our conclusions using density matrix renormalization group (DMRG) calculations. The proposed method can be applied to experimentally measured observables, such as differential reflectivity or the high harmonic generation (HHG) spectrum to extract doublon-hole correlation length. 
    more » « less