skip to main content

This content will become publicly available on November 10, 2022

Title: Genomes of Novel Myxococcota Reveal Severely Curtailed Machineries for Predation and Cellular Differentiation
ABSTRACT Cultured Myxococcota are predominantly aerobic soil inhabitants, characterized by their highly coordinated predation and cellular differentiation capacities. Little is currently known regarding yet-uncultured Myxococcota from anaerobic, nonsoil habitats. We analyzed genomes representing one novel order (o__JAFGXQ01) and one novel family (f__JAFGIB01) in the Myxococcota from an anoxic freshwater spring (Zodletone Spring) in Oklahoma, USA. Compared to their soil counterparts, anaerobic Myxococcota possess smaller genomes and a smaller number of genes encoding biosynthetic gene clusters (BGCs), peptidases, one- and two-component signal transduction systems, and transcriptional regulators. Detailed analysis of 13 distinct pathways/processes crucial to predation and cellular differentiation revealed severely curtailed machineries, with the notable absence of homologs for key transcription factors (e.g., FruA and MrpC), outer membrane exchange receptor (TraA), and the majority of sporulation-specific and A-motility-specific genes. Further, machine learning approaches based on a set of 634 genes informative of social lifestyle predicted a nonsocial behavior for Zodletone Myxococcota . Metabolically, Zodletone Myxococcota genomes lacked aerobic respiratory capacities but carried genes suggestive of fermentation, dissimilatory nitrite reduction, and dissimilatory sulfate-reduction (in f_JAFGIB01) for energy acquisition. We propose that predation and cellular differentiation represent a niche adaptation strategy that evolved circa 500 million years ago (Mya) in response to more » the rise of soil as a distinct habitat on Earth. IMPORTANCE The phylum Myxococcota is a phylogenetically coherent bacterial lineage that exhibits unique social traits. Cultured Myxococcota are predominantly aerobic soil-dwelling microorganisms that are capable of predation and fruiting body formation. However, multiple yet-uncultured lineages within the Myxococcota have been encountered in a wide range of nonsoil, predominantly anaerobic habitats, and the metabolic capabilities, physiological preferences, and capacity of social behavior of such lineages remain unclear. Here, we analyzed genomes recovered from a metagenomic analysis of an anoxic freshwater spring in Oklahoma, USA, that represent novel, yet-uncultured, orders and families in the Myxococcota . The genomes appear to lack the characteristic hallmarks for social behavior encountered in Myxococcota genomes and displayed a significantly smaller genome size and a smaller number of genes encoding biosynthetic gene clusters, peptidases, signal transduction systems, and transcriptional regulators. Such perceived lack of social capacity was confirmed through detailed comparative genomic analysis of 13 pathways associated with Myxococcota social behavior, as well as the implementation of machine learning approaches to predict social behavior based on genome composition. Metabolically, these novel Myxococcota are predicted to be strict anaerobes, utilizing fermentation, nitrate reduction, and dissimilarity sulfate reduction for energy acquisition. Our results highlight the broad patterns of metabolic diversity within the yet-uncultured Myxococcota and suggest that the evolution of predation and fruiting body formation in the Myxococcota has occurred in response to soil formation as a distinct habitat on Earth. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Editors:
Nikel, Pablo Ivan
Award ID(s):
2016423
Publication Date:
NSF-PAR ID:
10346791
Journal Name:
Applied and Environmental Microbiology
Volume:
87
Issue:
23
ISSN:
0099-2240
Sponsoring Org:
National Science Foundation
More Like this
  1. Approaches for recovering and analyzing genomes belonging to novel, hitherto unexplored bacterial lineages have provided invaluable insights into the metabolic capabilities and ecological roles of yet-uncultured taxa. The phylum Acidobacteria is one of the most prevalent and ecologically successful lineages on earth yet, currently, multiple lineages within this phylum remain unexplored. Here, we utilize genomes recovered from Zodletone spring, an anaerobic sulfide and sulfur-rich spring in southwestern Oklahoma, as well as from multiple disparate soil and non-soil habitats, to examine the metabolic capabilities and ecological role of members of the family UBA6911 (group18) Acidobacteria. The analyzed genomes clustered into fivemore »distinct genera, with genera Gp18_AA60 and QHZH01 recovered from soils, genus Ga0209509 from anaerobic digestors, and genera Ga0212092 and UBA6911 from freshwater habitats. All genomes analyzed suggested that members of Acidobacteria group 18 are metabolically versatile heterotrophs capable of utilizing a wide range of proteins, amino acids, and sugars as carbon sources, possess respiratory and fermentative capacities, and display few auxotrophies. Soil-dwelling genera were characterized by larger genome sizes, higher number of CRISPR loci, an expanded carbohydrate active enzyme (CAZyme) machinery enabling de-branching of specific sugars from polymers, possession of a C1 (methanol and methylamine) degradation machinery, and a sole dependence on aerobic respiration. In contrast, non-soil genomes encoded a more versatile respiratory capacity for oxygen, nitrite, sulfate, trimethylamine N-oxide (TMAO) respiration, as well as the potential for utilizing the Wood Ljungdahl (WL) pathway as an electron sink during heterotrophic growth. Our results not only expand our knowledge of the metabolism of a yet-uncultured bacterial lineage, but also provide interesting clues on how terrestrialization and niche adaptation drives metabolic specialization within the Acidobacteria.« less
  2. Sousa, Filipa L. ; Schleper, Christa M. (Ed.)
    ABSTRACT Life emerged and diversified in the absence of molecular oxygen. The prevailing anoxia and unique sulfur chemistry in the Paleo-, Meso-, and Neoarchean and early Proterozoic eras may have supported microbial communities that differ from those currently thriving on the earth’s surface. Zodletone spring in southwestern Oklahoma represents a unique habitat where spatial sampling could substitute for geological eras namely, from the anoxic, surficial light-exposed sediments simulating a preoxygenated earth to overlaid water column where air exposure simulates oxygen intrusion during the Neoproterozoic era. We document a remarkably diverse microbial community in the anoxic spring sediments, with 340/516 (65.89%)more »of genomes recovered in a metagenomic survey belonging to 200 bacterial and archaeal families that were either previously undescribed or that exhibit an extremely rare distribution on the current earth. Such diversity is underpinned by the widespread occurrence of sulfite, thiosulfate, tetrathionate, and sulfur reduction and the paucity of sulfate reduction machineries in these taxa. Hence, these processes greatly expand lineages mediating reductive sulfur-cycling processes in the tree of life. An analysis of the overlaying oxygenated water community demonstrated the development of a significantly less diverse community dominated by well-characterized lineages and a prevalence of oxidative sulfur-cycling processes. Such a transition from ancient novelty to modern commonality underscores the profound impact of the great oxygenation event on the earth’s surficial anoxic community. It also suggests that novel and rare lineages encountered in current anaerobic habitats could represent taxa that once thrived in an anoxic earth but have failed to adapt to earth’s progressive oxygenation. IMPORTANCE Life on earth evolved in an anoxic setting; however, the identity and fate of microorganisms that thrived in a preoxygenated earth are poorly understood. In Zodletone spring, the prevailing geochemical conditions are remarkably similar to conditions prevailing in surficial earth prior to oxygen buildup in the atmosphere. We identify hundreds of previously unknown microbial lineages in the spring and demonstrate that these lineages possess the metabolic machinery to mediate a wide range of reductive sulfur processes, with the capacity to respire sulfite, thiosulfate, sulfur, and tetrathionate, rather than sulfate, which is a reflection of the differences in sulfur-cycling chemistry in ancient versus modern times. Collectively, such patterns strongly suggest that microbial diversity and sulfur-cycling processes in a preoxygenated earth were drastically different from the currently observed patterns and that the Great Oxygenation Event has precipitated the near extinction of a wide range of oxygen-sensitive lineages and significantly altered the microbial reductive sulfur-cycling community on earth.« less
  3. Newton, Irene L. (Ed.)
    ABSTRACT We analyzed five metagenome-assembled genomes (MAGs) belonging to the rare, yet-uncultured phylum CSSED10-310 recovered from the anoxic sediments of Zodletone Spring (Oklahoma). Our analysis suggests their potential involvement in sulfite respiration.
  4. Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and othermore »geochemical processes at the spring source. Sediment samples at the spring’s source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons.

    « less
  5. Soil anoxia is common in the annually thawed surface (‘active’) layer of permafrost soils, particularly when soils are saturated, and supports anaerobic microbial metabolism and methane (CH4) production. Rainfall contributes to soil saturation, but can also introduce oxygen, causing soil oxidation and altering anoxic conditions. We simulated a rainfall event in soil mesocosms from two dominant tundra types, tussock tundra and wet sedge tundra, to test the impacts of rainfall‐induced soil oxidation on microbial communities and their metabolic capacity for anaerobic CH4 production and aerobic respiration following soil oxidation. In both types, rainfall increased total soil O2 concentration, but inmore »tussock tundra there was a 2.5‐fold greater increase in soil O2 compared to wet sedge tundra due to differences in soil drainage. Metagenomic and metatranscriptomic analyses found divergent microbial responses to rainfall between tundra types. Active microbial taxa in the tussock tundra community, including bacteria and fungi, responded to rainfall with a decline in gene expression for anaerobic metabolism and a concurrent increase in gene expression for cellular growth. In contrast, the wet sedge tundra community showed no significant changes in microbial gene expression from anaerobic metabolism, fermentation, or methanogenesis following rainfall, despite an initial increase in soil O2 concentration. These results suggest that rainfall induces soil oxidation and enhances aerobic microbial respiration in tussock tundra communities but may not accumulate or remain in wet sedge tundra soils long enough to induce a community‐wide shift from anaerobic metabolism. Thus, rainfall may serve only to maintain saturated soil conditions that promote CH4 production in low‐lying wet sedge tundra soils across the Arctic.« less