skip to main content

Title: The Goldilocks effect: female geladas in mid-sized groups have higher fitness
The cost–benefit ratio of group living is thought to vary with group size: individuals in ‘optimally sized’ groups should have higher fitness than individuals in groups that are either too large or too small. However, the relationship between group size and individual fitness has been difficult to establish for long-lived species where the number of groups studied is typically quite low. Here, we present evidence for optimal group size that maximizes female fitness in a population of geladas ( Theropithecus gelada ). Drawing on 14 years of demographic data, we found that females in small groups experienced the highest death rates, while females in mid-sized groups exhibited the highest reproductive performance. This group size effect on female reproductive performance was largely explained by variation in infant mortality (and, in particular, by infanticide from immigrant males) but not by variation in reproductive rates. Taken together, females in mid-sized groups are projected to attain optimal fitness due to conspecific infanticide and, potentially, predation. Our findings provide insight into how and why group size shapes fitness in long-lived species.
Authors:
; ; ; ; ;
Award ID(s):
1723228
Publication Date:
NSF-PAR ID:
10346917
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
288
Issue:
1952
Page Range or eLocation-ID:
20210820
ISSN:
0962-8452
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Across multiple species of social mammals, a growing number of studies have found that individual sociality is associated with survival. In long-lived species, like primates, lifespan is one of the main components of fitness. We used 18 years of data from the Lomas Barbudal Monkey Project to quantify social integration in 11 capuchin (Cebus capucinus) groups and tested whether female survivorship was associated with females’ tendencies to interact with three types of partners: (1) all group members, (2) adult females, and (3) adult males. We found strong evidence that females who engaged more with other females in affiliative interactions and foraged in close proximity experienced increased survivorship. We found some weak evidence that females might also benefit from engaging in more support in agonistic contexts with other females. These benefits were evident in models that account for the females’ rank and group size. Female interactions with all group members also increased survival, but the estimates of the effects were more uncertain. In interactions with adult males, only females who provided more grooming to males survived longer. The results presented here suggest that social integration may result in survival-related benefits. Females might enjoy these benefits through exchanging grooming for othermore »currencies, such as coalitionary support or tolerance.

    « less
  2. In this talk I reveal how recent research on great ape behavior and physiology provides new insights into the similarities we share with our closest relatives. In particular, I focus on my long-term research studying wild orangutans in Gunung Palung National Park, Indonesia for over 25 years. Orangutans are known for one of the highest rates of sexual coercion, through forced copulation, of any animal. This is coupled with another intriguing phenomenon of having two male morphs, a rare type of male bi-maturism. Females share crucial features of reproductive physiology in common with humans, such as concealed ovulation and menstrual cycle length. In this talk I explore the complexity of male and female reproductive decisions in wild orangutans and the ways that these reveal insights into the evolution of human mating systems. This includes new research from my team on the development of socio-sexual behavior in adolescent females and how the threat of forced copulation, as well possible infanticide risk, impacts female behavior and ranging patterns. I also demonstrate the success of strategies employed by females to avoid undesired sires. These results reveal that, despite high rates of forced copulation, female choice is an important feature of orangutan mating patterns.more »I also discuss why sexual coercion is so prevalent in orangutans and how this type of sexual selection may be much more common across animals than often recognized. I point to the need for considering comparative data on sexual conflict as we consider the evolution of human mating patterns.« less
  3. Infanticide as a male reproductive tactic is widespread across mammals, and is particularly prevalent in catarrhine primates. While it has never been observed in wild orangutans, infanticide by non-sire males has been predicted to occur due to their extremely long inter-birth intervals, semi-solitary social structure, and the presence of female counter-tactics to infanticide. Here, we report on the disappearance of a healthy four-month-old infant, along with a serious foot injury suffered by the primiparous mother. No other cases of infant mortality have been observed at this site in 30 years of study. Using photographic measurements of the injury, and information on the behavior and bite size of potential predators, we evaluate the possible causes of this injury. The context, including the behavior of the female and the presence of a new male at the time of the injury, lead us to conclude that the most likely cause of the infant loss and maternal injury was male infanticide. We suggest that in orangutans, and other species where nulliparous females are not preferred mates, these females may be less successful at using paternity confusion as an infanticide avoidance tactic, thus increasing the likelihood of infanticide of their first-born infants.
  4. Abstract

    Infanticide as a male reproductive tactic is widespread across mammals, and is particularly prevalent in catarrhine primates. While it has never been observed in wild orangutans, infanticide by non-sire males has been predicted to occur due to their extremely long inter-birth intervals, semi-solitary social structure, and the presence of female counter-tactics to infanticide. Here, we report on the disappearance of a healthy four-month-old infant, along with a serious foot injury suffered by the primiparous mother. No other cases of infant mortality have been observed at this site in 30 years of study. Using photographic measurements of the injury, and information on the behavior and bite size of potential predators, we evaluate the possible causes of this injury. The context, including the behavior of the female and the presence of a new male at the time of the injury, lead us to conclude that the most likely cause of the infant loss and maternal injury was male infanticide. We suggest that in orangutans, and other species where nulliparous females are not preferred mates, these females may be less successful at using paternity confusion as an infanticide avoidance tactic, thus increasing the likelihood of infanticide of their first-born infants.

  5. BACKGROUND Charles Darwin’s  Descent of Man, and Selection in Relation to Sex  tackled the two main controversies arising from the Origin of Species:  the evolution of humans from animal ancestors and the evolution of sexual ornaments. Most of the book focuses on the latter, Darwin’s theory of sexual selection. Research since supports his conjecture that songs, perfumes, and intricate dances evolve because they help secure mating partners. Evidence is overwhelming for a primary role of both male and female mate choice in sexual selection—not only through premating courtship but also through intimate interactions during and long after mating. But what makes one prospective mate more enticing than another? Darwin, shaped by misogyny and sexual prudery, invoked a “taste for the beautiful” without speculating on the origin of the “taste.” How to explain when the “final marriage ceremony” is between two rams? What of oral sex in bats, cloacal rubbing in bonobos, or the sexual spectrum in humans, all observable in Darwin’s time? By explaining desire through the lens of those male traits that caught his eyes and those of his gender and culture, Darwin elided these data in his theory of sexual evolution. Work since Darwin has focused on howmore »traits and preferences coevolve. Preferences can evolve even if attractive signals only predict offspring attractiveness, but most attention has gone to the intuitive but tenuous premise that mating with gorgeous partners yields vigorous offspring. By focusing on those aspects of mating preferences that coevolve with male traits, many of Darwin’s influential followers have followed the same narrow path. The sexual selection debate in the 1980s was framed as “good genes versus runaway”: Do preferences coevolve with traits because traits predict genetic benefits, or simply because they are beautiful? To the broader world this is still the conversation. ADVANCES Even as they evolve toward ever-more-beautiful signals and healthier offspring, mate-choice mechanisms and courter traits are locked in an arms race of coercion and resistance, persuasion and skepticism. Traits favored by sexual selection often do so at the expense of chooser fitness, creating sexual conflict. Choosers then evolve preferences in response to the costs imposed by courters. Often, though, the current traits of courters tell us little about how preferences arise. Sensory systems are often tuned to nonsexual cues like food, favoring mating signals resembling those cues. And preferences can emerge simply from selection on choosing conspecifics. Sexual selection can therefore arise from chooser biases that have nothing to do with ornaments. Choice may occur before mating, as Darwin emphasized, but individuals mate multiple times and bias fertilization and offspring care toward favored partners. Mate choice can thus occur in myriad ways after mating, through behavioral, morphological, and physiological mechanisms. Like other biological traits, mating preferences vary among individuals and species along multiple dimensions. Some of this is likely adaptive, as different individuals will have different optimal mates. Indeed, mate choice may be more about choosing compatible partners than picking the “best” mate in the absolute sense. Compatibility-based choice can drive or reinforce genetic divergence and lead to speciation. The mechanisms underlying the “taste for the beautiful” determine whether mate choice accelerates or inhibits reproductive isolation. If preferences are learned from parents, or covary with ecological differences like the sensory environment, then choice can promote genetic divergence. If everyone shares preferences for attractive ornaments, then choice promotes gene flow between lineages. OUTLOOK Two major trends continue to shift the emphasis away from male “beauty” and toward how and why individuals make sexual choices. The first integrates neuroscience, genomics, and physiology. We need not limit ourselves to the feathers and dances that dazzled Darwin, which gives us a vastly richer picture of mate choice. The second is that despite persistent structural inequities in academia, a broader range of people study a broader range of questions. This new focus confirms Darwin’s insight that mate choice makes a primary contribution to sexual selection, but suggests that sexual selection is often tangential to mate choice. This conclusion challenges a persistent belief with sinister roots, whereby mate choice is all about male ornaments. Under this view, females evolve to prefer handsome males who provide healthy offspring, or alternatively, to express flighty whims for arbitrary traits. But mate-choice mechanisms also evolve for a host of other reasons Understanding mate choice mechanisms is key to understanding how sexual decisions underlie speciation and adaptation to environmental change. New theory and technology allow us to explicitly connect decision-making mechanisms with their evolutionary consequences. A century and a half after Darwin, we can shift our focus to females and males as choosers, rather than the gaudy by-products of mate choice. Mate choice mechanisms across domains of life. Sensory periphery for stimulus detection (yellow), brain for perceptual integration and evaluation (orange), and reproductive structures for postmating choice among pollen or sperm (teal). ILLUSTRATION: KELLIE HOLOSKI/ SCIENCE« less