skip to main content


Title: Pressure and Strain Measurement on a 10° Control Surface of a Slender Cone in Hypersonic Flow
This paper presents the results of an experimental technique to acquire full-field pressure and strain fields on the windward side of a 10° flap attached to a slender cone-slice model. Tests were conducted in the Hypersonic Wind Tunnel (M = 5, Re= 9 – 14×10^6/m, air) at Sandia National Laboratories. The flap was coated with a fast-response, pressure-sensitive paint sprayed over a photoelastic coating and located near the trailing-edge of an axial slice along the 7° slender cone. This experiment was part of a sponsored project to develop the two-coating luminescent measurement technique and apply to high-speed, fluid-structure interaction environments. Results using a low-speed micropolarizer camera with four polarization orientations show that the technique is sensitive to pressure and strain, measuring an increasing pressure and decreasing strain from leading- to trailing-edge over the surface of the flap. At the low Re condition, the pressure signal captures the separated region near the flap leading edge and compares well with schlieren and oil-film measurements, the latter on a 10° wedge. Aerodynamic heating during the run does affect the pressure signal, likely resulting in an overestimation of pressure. Results using a conventional high-speed camera with a single linear polarizer captures the first bending and torsional modes of vibration when the flap is excited by transient shutdown conditions; however, coupling is difficult to detect in the pressure response due to baseline noise and the slower temporal response of the pressure coating.  more » « less
Award ID(s):
1802994
NSF-PAR ID:
10346953
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
AIAA AVIATION Forum
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT The clap-and-fling mechanism is a well-studied, unsteady lift generation mechanism widely used by flying insects and is considered obligatory for tiny insects flying at low to intermediate Reynolds numbers, Re . However, some aquatic zooplankters including some pteropod (i.e. sea butterfly) and heteropod species swimming at low to intermediate Re also use the clap-and-fling mechanism. These marine snails have extremely flexible, actively deformed, muscular wings which they flap reciprocally to create propulsive force, and these wings may enable novel lift generation mechanisms not available to insects, which have less flexible, passively deformed wings. Using high-speed stereophotogrammetry and micro-particle image velocimetry, we describe a novel cylindrical overlap-and-fling mechanism used by the pteropod species Cuvierina atlantica . In this maneuver, the pteropod's wingtips overlap at the end of each half-stroke to sequentially form a downward-opening cone, a cylinder and an upward-opening cone. The transition from downward-opening cone to cylinder produces a downward-directed jet at the trailing edges. Similarly, the transition from cylinder to upward-opening cone produces downward flow into the gap between the wings, a leading edge vortex ring and a corresponding sharp increase in swimming speed. The ability of this pteropod species to perform the cylindrical overlap-and-fling maneuver twice during each stroke is enabled by its slender body and highly flexible wings. The cylindrical overlap-and-fling mechanism observed here may inspire the design of new soft robotic aquatic vehicles incorporating highly flexible propulsors to take advantage of this novel lift generation technique. 
    more » « less
  2. Abstract

    An experimental study was undertaken to evaluate the power extraction of an airfoil undergoing large amplitude pitching and heaving using a trailing edge flapping motion for the application of energy harvesting for steady flow over the airfoil. The airfoil was a NACA0015 design, pitching at the 1/3 chord position, with an actively controlled trailing edge flap hinged at the 2/3 chord location (chord length of c = 150mm and aspect ratio AR = 2, however end plates were used to simulate a two-dimensional airfoil). Data were obtained over a range of wind speeds corresponding to Reynolds numbers in the 30,000–60,000 range in a low-speed wind tunnel with turbulence intensities below 2%. The results are characterized using the reduced frequency, k = fc/U∞ over the range of 0.04–0.08, where f is the oscillating frequency in Hz, and U∞ is the freestream velocity. The pitching and heaving amplitudes are θ0 = 70° and h0 = 0.6c respectively, with a phase delay of 90°. Two trailing edge motion profiles are presented, examining the relative phase of trailing edge flap to the pitching phase. For each motion, a positive and negative case are considered. This is a total of 4 trailing edge motion profiles. Trailing edge motion amplitudes of 20° and 40° are compared and results contrasted. Direct transient force measurements were used to obtain the cycle variation of induced aerodynamic loads (lift coefficient) as well as the power output and efficiency. Results are used to identify the influence of trailing edge flap oscillations on the overall performance for energy harvesting, with a maximum efficiency increase of 21.3% and corresponding cycle averaged heaving power coefficient increase of 29.9% observed as a result of trailing edge motion.

     
    more » « less
  3. null (Ed.)
    A closed-loop control algorithm for the reduction of turbulent flow separation over NACA 0015 airfoil equipped with leading-edge synthetic jet actuators (SJAs) is presented. A system identification approach based on Nonlinear Auto-Regressive Moving Average with eXogenous inputs (NARMAX) technique was used to predict nonlinear dynamics of the fluid flow and for the design of the controller system. Numerical simulations based on URANS equations are performed at Reynolds number of 106 for various airfoil incidences with and without closed-loop control. The NARMAX model for flow over an airfoil is based on the static pressure data, and the synthetic jet actuator is developed using an incompressible flow model. The corresponding NARMAX identification model developed for the pressure data is nonlinear; therefore, the describing function technique is used to linearize the system within its frequency range. Low-pass filtering is used to obtain quasi-linear state values, which assist in the application of linear control techniques. The reference signal signifies the condition of a fully re-attached flow, and it is determined based on the linearization of the original signal during open-loop control. The controller design follows the standard proportional-integral (PI) technique for the single-input single-output system. The resulting closed-loop response tracks the reference value and leads to significant improvements in the transient response over the open-loop system. The NARMAX controller enhances the lift coefficient from 0.787 for the uncontrolled case to 1.315 for the controlled case with an increase of 67.1%. 
    more » « less
  4. The application of a flapping foil with prescribed trailing edge motion to energy harvesting in a low reduced frequency (k = fc/U∞) regime was experimentally studied. The effects of the phase and amplitude of the applied trailing edge motion upon time-variant power extraction capability have been measured and are interpreted. On these bases, an optimized motion profile is developed. The airfoil design used was NACA0015 in profile with a chord length of c = 150mm, the pitching axis located at the 1/3 chord position, and an actively-controlled trailing edge flap hinged at the 2/3 chord location. The pitching and heaving amplitudes are θ0 = 70◦ and h0 = 0.6c respectively, with a phase delay of 90◦. Although the aspect ratio was 2, end plates were used to minimize 3-dimensional effects and simulate a 2-dimensional airfoil. Data were collected in a low-speed wind tunnel with turbulence intensities below 2%. The Reynolds number (Rec = U∞c/ν) range was 27, 000 ≤ Rec ≤ 60, 000 with a corresponding reduced frequency range of 0.04 ≤ k ≤ 0.10. The proposed trailing edge motion profile offers a measured maximum increase of 25.6% in cycle-averaged heaving power coefficient over a rigid foil operating under the same conditions. Results indicate that smaller trailing edge amplitudes offer greater improvements, and demonstrate that the influence of trailing edge motion can be more pronounced at low reduced frequencies. 
    more » « less
  5. Fibers capable of generating axial contraction are commonly seen in nature and engineering applications. Despite the broad applications of fiber actuators, it is still very challenging to fabricate fiber actuators with combined large actuation strain, fast response speed, and high power density. Here, we report the fabrication of a liquid crystal elastomer (LCE) microfiber actuators using a facile electrospinning technique. Owing to the extremely small size of the LCE microfibers, they can generate large actuation strain (~60 percent) with a fast response speed (<0.2 second) and a high power density (400 watts per kilogram), resulting from the nematic-isotropic phase transition of liquid crystal mesogens. Moreover, no performance degradation is detected in the LCE microfibers after 106cycles of loading and unloading with the maximum strain of 20 percent at high temperature (90 degree Celsius). The small diameter of the LCE microfiber also results in a self-oscillatory behavior in a steady temperature field. In addition, with a polydopamine coating layer, the actuation of the electrospun LCE microfiber can be precisely and remotely controlled by a near-infrared laser through photothermal effect. Using the electrospun LCE microfiber actuator, we have successfully constructed a microtweezer, a microrobot, and a light-powered microfluidic pump.

     
    more » « less