skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Museum-based Virtual Reality and Middle Schoolers Interest and Engagement in Science.
This study explores the impact of an immersive VR experience and middle school students’ interest in and engagement with science. Thirteen students completed a VR experience with two components: a virtual laboratory and a game. Afterwards, students were interviewed and asked to describe their experiences. Students consistently reported the VR experience to be enjoyable and engaging. Moreover, the VR experience seemed to trigger a situational interest in science among the students, with some evidence to suggest that this interest could be sustained and developed in the long term. Implications for research and practice are discussed.  more » « less
Award ID(s):
1906686
PAR ID:
10347030
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
SITE Interactive Conference
Volume:
2021
Issue:
1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Students have misconceptions of size and scale cognition as they confuse molecules and cells. The team deployed a virtual reality (VR) learning tool, namely Scale Worlds, for K-12 students to use at school. The present work aimed to examine the experience and perception of immersive technology, and logistical challenges of integrating Scale Worlds into a science class. Ten students and three teachers were included in this study with informed consent. Scale Worlds was introduced as part of a science class and then semi-structured interview was conducted. Students’ experience with VR technology included physiological discomfort, psychological nervousness and uncertainty of technology, personal abilities and unfamiliarity, and hardware latency. However, students perceived Scale Worlds to be a useful tool that helped them visualize entities of different sizes, and allowed them to work collaboratively. Teachers expressed desire for more exciting content in Scale Worlds and further usability enhancement, as well as need for additional material preparation time. The team planned to return to the same middle school for another round of in-field study after addressing some of the reported challenges. 
    more » « less
  2. null (Ed.)
    Like many natural sciences, a critical component of archaeology is field work. Despite its importance, field opportunities are available to few students for financial and logistical reasons. With little exposure to archaeological research, fewer students are entering archaeology, particularly minority students (Smith 2004; Wilson 2015). To counter these trends, we have leveraged the ongoing revolution in consumer electronics for the current, digitally-empowered generation by creating a game-based, virtual archaeology curriculum to 1) teach foundational principles of a discipline that is challenging to present in a traditional classroom by using sensory and cognitive immersion; and, 2) allow wider access to a field science that has previously been limited to only select students. Virtual reality (VR) is computer technology that creates a simulated three-dimensional world for a user to experience in a bodily way, thereby transforming data analysis into a sensory and cognitive experience. Using a widely-available, room-scale, VR platform, we have created a virtual archaeological excavation experience that conveys two overarching classroom objectives: 1) teach the physical methods of archaeological excavation by providing the setting and tools for a student to actively engage in field work; and, 2) teach archaeological concepts using a scientific approach to problem solving by couching them within a role-playing game. The current prototype was developed with the HTC Vive VR platform, which includes a headset, hand controllers, and two base stations to track the position and orientation of the user’s head and hands within a 4x4 meter area. Environments were developed using Unreal Engine 4, an open source gaming engine, to maximize usability for different audiences, learning objectives, and skill levels. Given the inherent fun of games and widespread interest in archaeology and cultural heritage, the results of this research are adaptable and applicable to learners of all ages in formal and informal educational settings. 
    more » « less
  3. null (Ed.)
    We study student experiences of social VR for remote instruction, with students attending class from home. The study evaluates student experiences when: (1) viewing remote lectures with VR headsets, (2) viewing with desktop displays, (3) presenting with VR headsets, and (4) reflecting on several weeks of VR-based class attendance. Students rated factors such as presence, social presence, simulator sickness, communication methods, avatar and application features, and tradeoffs with other remote approaches. Headset-based viewing and presenting produced higher presence than desktop viewing, but had less-clear impact on overall experience and on most social presence measures. We observed higher attentional allocation scores for headset-based presenting than for both viewing methods. For headset VR, there were strong negative correlations between simulator sickness (primarily reported as general discomfort) and ratings of co-presence, overall experience, and some other factors. This suggests that comfortable users experienced substantial benefits of headset viewing and presenting, but others did not. Based on the type of virtual environment, student ratings, and comments, reported discomfort appears related to physical ergonomic factors or technical problems. Desktop VR appears to be a good alternative for uncomfortable students, and students report that they prefer a mix of headset and desktop viewing. We additionally provide insight from students and a teacher about possible improvements for VR class technology, and we summarize student opinions comparing viewing and presenting in VR to other remote class technologies. 
    more » « less
  4. Virtual reality (VR) has been widely used for education and affords embodied learning experiences. Here we describe: Scale Worlds (SW), an immersive virtual environment to allow users to shrink or grow by powers of ten (10X) and experience entities from molecular to astronomical levels; and students’ impressions and outcomes from experiencing SW in a CAVE (Figure 1) during experiential summer outreach sessions. Data collected from post-visit surveys of 69 students, and field observations, revealed that VR technologies: enabled interactive learning experiences; encouraged active engagement and discussions among participating students; enhanced the understanding of size and scale; and increased interest in STEM careers. 
    more » « less
  5. Ko, A. K. (Ed.)
    There are significant participation gaps in computing, and the way to address these participation gaps lies not simply in getting students from underrepresented groups into a CS1 classroom, but supporting students to pursue their interest in computing further beyond CS1. There are many factors that may influence students’ pursuit of computing beyond introductory courses, including their sense that they can do what CS courses require of them (their self-efficacy) and positive emotional experiences in CS courses. When interest has been addressed in computing education, research has treated it mostly as an outcome of particular pedagogical approaches or curricula; what has not been studied is how students’ longer-term interest develops through more granular experiences that students have as they begin to engage with computing. In this paper, we present the results of a study designed to investigate how students’ interest in computing develops as a product of their momentary self-efficacy and affective experiences. Using a methodology that is relatively uncommon to computer science education—the experience sampling method, which involves frequently asking students brief, unobtrusive questions about their experiences—we surveyed CS1 students every week over the course of a semester to capture the nuances of their experiences. 74 CS1 students responded 14-18 times over the course of a semester about their self-efficacy, frustration, and situational interest. With this data, we used a multivariate, multi-level statistical model that allowed us to estimate how students’ granular, momentary experiences (measured through the experience sampling method surveys) and initial interest, self-efficacy, and self-reported gender (measured through traditional surveys) relate to their longer-term interest and achievement in the course. We found that students’ momentary experiences have a significant impact on their interest in computing and course outcomes, even controlling for the self-efficacy and interest students reported at the beginning of the semester. We also found significant gender differences in students’ momentary experiences, however, these were reduced substantially when students’ self-efficacy was added to the model, suggesting that gender gaps could instead be self-efficacy gaps. These results suggest that students’ momentary experiences in CS1, how they experience the course week to week, have an impact on their longer-term interest and learning outcomes. Furthermore, we found that male and female students reported different experiences, suggesting that improving the CS1 experiences that students have could help to close gender-related participation gaps. In all, this study shows that the granular experiences students have in CS1 matter for key outcomes of interest to computing education researchers and educators and that the experience sampling method, more common in fields adjacent to computer science education, provides one way for researchers to integrate the experiences students have into our accounts of why students become interested in computing. 
    more » « less