skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reimagining Connected Care in the Era of Digital Medicine
The COVID-19 pandemic accelerated the adoption of remote patient monitoring technology, which offers exciting opportunities for expanded connected care at a distance. However, while the mode of clinicians’ interactions with patients and their health data has transformed, the larger framework of how we deliver care is still driven by a model of episodic care that does not facilitate this new frontier. Fully realizing a transformation to a system of continuous connected care augmented by remote monitoring technology will require a shift in clinicians’ and health systems’ approach to care delivery technology and its associated data volume and complexity. In this article, we present a solution that organizes and optimizes the interaction of automated technologies with human oversight, allowing for the maximal use of data-rich tools while preserving the pieces of medical care considered uniquely human. We review implications of this “augmented continuous connected care” model of remote patient monitoring for clinical practice and offer human-centered design-informed next steps to encourage innovation around these important issues.  more » « less
Award ID(s):
1928614
PAR ID:
10347137
Author(s) / Creator(s):
;
Date Published:
Journal Name:
JMIR mHealth and uHealth
Volume:
10
Issue:
4
ISSN:
2291-5222
Page Range / eLocation ID:
e34483
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background Remote patient monitoring (RPM) technologies can support patients living with chronic conditions through self-monitoring of physiological measures and enhance clinicians’ diagnostic and treatment decisions. However, to date, large-scale pragmatic RPM implementation within health systems has been limited, and understanding of the impacts of RPM technologies on clinical workflows and care experience is lacking. Objective In this study, we evaluate the early implementation of operational RPM initiatives for chronic disease management within the ambulatory network of an academic medical center in New York City, focusing on the experiences of “early adopter” clinicians and patients. Methods Using a multimethod qualitative approach, we conducted (1) interviews with 13 clinicians across 9 specialties considered as early adopters and supporters of RPM and (2) speculative design sessions exploring the future of RPM in clinical care with 21 patients and patient representatives, to better understand experiences, preferences, and expectations of pragmatic RPM use for health care delivery. Results We identified themes relevant to RPM implementation within the following areas: (1) data collection and practices, including impacts of taking real-world measures and issues of data sharing, security, and privacy; (2) proactive and preventive care, including proactive and preventive monitoring, and proactive interventions and support; and (3) health disparities and equity, including tailored and flexible care and implicit bias. We also identified evidence for mitigation and support to address challenges in each of these areas. Conclusions This study highlights the unique contexts, perceptions, and challenges regarding the deployment of RPM in clinical practice, including its potential implications for clinical workflows and work experiences. Based on these findings, we offer implementation and design recommendations for health systems interested in deploying RPM-enabled health care. 
    more » « less
  2. Background Digital health is poised to transform health care and redefine personalized health. As Internet and mobile phone usage increases, as technology develops new ways to collect data, and as clinical guidelines change, all areas of medicine face new challenges and opportunities. Inflammatory bowel disease (IBD) is one of many chronic diseases that may benefit from these advances in digital health. This review intends to lay a foundation for clinicians and technologists to understand future directions and opportunities together. Objective This review covers mobile health apps that have been used in IBD, how they have fit into a clinical care framework, and the challenges that clinicians and technologists face in approaching future opportunities. Methods We searched PubMed, Scopus, and ClinicalTrials.gov to identify mobile apps that have been studied and were published in the literature from January 1, 2010, to April 19, 2019. The search terms were (“mobile health” OR “eHealth” OR “digital health” OR “smart phone” OR “mobile app” OR “mobile applications” OR “mHealth” OR “smartphones”) AND (“IBD” OR “Inflammatory bowel disease” OR “Crohn's Disease” (CD) OR “Ulcerative Colitis” (UC) OR “UC” OR “CD”), followed by further analysis of citations from the results. We searched the Apple iTunes app store to identify a limited selection of commercial apps to include for discussion. Results A total of 68 articles met the inclusion criteria. A total of 11 digital health apps were identified in the literature and 4 commercial apps were selected to be described in this review. While most apps have some educational component, the majority of apps focus on eliciting patient-reported outcomes related to disease activity, and a few are for treatment management. Significant benefits have been seen in trials relating to education, quality of life, quality of care, treatment adherence, and medication management. No studies have reported a negative impact on any of the above. There are mixed results in terms of effects on office visits and follow-up. Conclusions While studies have shown that digital health can fit into, complement, and improve the standard clinical care of patients with IBD, there is a need for further validation and improvement, from both a clinical and patient perspective. Exploring new research methods, like microrandomized trials, may allow for more implementation of technology and rapid advancement of knowledge. New technologies that can objectively and seamlessly capture remote data, as well as complement the clinical shift from symptom-based to inflammation-based care, will help the clinical and health technology communities to understand the full potential of digital health in the care of IBD and other chronic illnesses. 
    more » « less
  3. null (Ed.)
    Augmented Reality (AR) as a technology will improve the way we work and live in the future. The Microsoft HoloLens device allows for rendering of interactive virtual components into a real world space. The HoloLens is an augmented reality headset and can display these virtual components in front of the user’s eyes, so the data needed to complete a real-world task will always be available. The nature of a HoloLens device lends itself useful for applications in a healthcare setting. Potential benefits come from transitioning to a more hands-free environment such as allowing the logging of data while in sterile environments without needing to sterilize repeatedly from touching paper or tablet. This project developed an augmented reality (AR) application to include a care plan tracker established by a patient’s doctor to allow the patient to do daily tasks without a health care worker’s supervision. The application displays the medications that the patient needs to ingest, daily tasks to complete, and health data to record. The application allows the physician to retrieve useful patient information regularly without scheduled physicals. This project sets a baseline that will provide future developers with documentation, research, and this sample application to assist in the design and construction of more complex applications in the future at the University of New Hampshire. 
    more » « less
  4. Motor rehabilitation is a long term, labor intensive and patient-specific process that requires one-on-one care from skilled clinicians and physiotherapists. Virtual rehabilitation is an alternative rehabilitation technology that can provide intensive motor training with minimal supervision from physiotherapists. However, virtual rehabilitation exercises lack of realism and less connected with Activities of Daily Livings. In this paper, we present six Virtual Reality games that we developed for 5DT data glove, 1-DOF IntelliStretch robot and Xbox Kinect to improve the accessibility of motor rehabilitation. 
    more » « less
  5. Diabetes management requires constant monitoring and individualized adjustments. This study proposes a novel approach that leverages digital twins and personal health knowledge graphs (PHKGs) to revolutionize diabetes care. Our key contribution lies in developing a real-time, patient-centric digital twin framework built on PHKGs. This framework integrates data from diverse sources, adhering to HL7 standards and enabling seamless information access and exchange while ensuring high levels of accuracy in data representation and health insights. PHKGs offer a flexible and efficient format that supports various applications. As new knowledge about the patient becomes available, the PHKG can be easily extended to incorporate it, enhancing the precision and accuracy of the care provided. This dynamic approach fosters continuous improvement and facilitates the development of new applications. As a proof of concept, we have demonstrated the versatility of our digital twins by applying it to different use cases in diabetes management. These include predicting glucose levels, optimizing insulin dosage, providing personalized lifestyle recommendations, and visualizing health data. By enabling real-time, patient-specific care, this research paves the way for more precise and personalized healthcare interventions, potentially improving long-term diabetes management outcomes. 
    more » « less