Background Participation in ambulatory cardiac rehabilitation remains low, especially among older adults. Although mobile health cardiac rehabilitation (mHealth-CR) provides a novel opportunity to deliver care, age-specific impairments may limit older adults’ uptake, and efficacy data are currently lacking. Objective This study aims to describe the design of the rehabilitation using mobile health for older adults with ischemic heart disease in the home setting (RESILIENT) trial. Methods RESILIENT is a multicenter randomized clinical trial that is enrolling patients aged ≥65 years with ischemic heart disease in a 3:1 ratio to either an intervention (mHealth-CR) or control (usual care) arm, with a target sample size of 400 participants. mHealth-CR consists of a commercially available mobile health software platform coupled with weekly exercise therapist sessions to review progress and set new activity goals. The primary outcome is a change in functional mobility (6-minute walk distance), which is measured at baseline and 3 months. Secondary outcomes are health status, goal attainment, hospital readmission, and mortality. Among intervention participants, engagement with the mHealth-CR platform will be analyzed to understand the characteristics that determine different patterns of use (eg, persistent high engagement and declining engagement). Results As of December 2021, the RESILIENT trial had enrolled 116 participants. Enrollment is projected to continue until October 2023. The trial results are expected to be reported in 2024. Conclusions The RESILIENT trial will generate important evidence about the efficacy of mHealth-CR among older adults in multiple domains and characteristics that determine the sustained use of mHealth-CR. These findings will help design future precision medicine approaches to mobile health implementation in older adults. This knowledge is especially important in light of the COVID-19 pandemic that has shifted much of health care to a remote, internet-based setting. Trial Registration ClinicalTrials.gov NCT03978130; https://clinicaltrials.gov/ct2/show/NCT03978130 International Registered Report Identifier (IRRID) DERR1-10.2196/32163
more »
« less
Evaluating the Effect of a COVID-19 Predictive Model to Facilitate Discharge: A Randomized Controlled Trial
Abstract Background We previously developed and validated a predictive model to help clinicians identify hospitalized adults with coronavirus disease 2019 (COVID-19) who may be ready for discharge given their low risk of adverse events. Whether this algorithm can prompt more timely discharge for stable patients in practice is unknown. Objectives The aim of the study is to estimate the effect of displaying risk scores on length of stay (LOS). Methods We integrated model output into the electronic health record (EHR) at four hospitals in one health system by displaying a green/orange/red score indicating low/moderate/high-risk in a patient list column and a larger COVID-19 summary report visible for each patient. Display of the score was pseudo-randomized 1:1 into intervention and control arms using a patient identifier passed to the model execution code. Intervention effect was assessed by comparing LOS between intervention and control groups. Adverse safety outcomes of death, hospice, and re-presentation were tested separately and as a composite indicator. We tracked adoption and sustained use through daily counts of score displays. Results Enrolling 1,010 patients from May 15, 2020 to December 7, 2020, the trial found no detectable difference in LOS. The intervention had no impact on safety indicators of death, hospice or re-presentation after discharge. The scores were displayed consistently throughout the study period but the study lacks a causally linked process measure of provider actions based on the score. Secondary analysis revealed complex dynamics in LOS temporally, by primary symptom, and hospital location. Conclusion An AI-based COVID-19 risk score displayed passively to clinicians during routine care of hospitalized adults with COVID-19 was safe but had no detectable impact on LOS. Health technology challenges such as insufficient adoption, nonuniform use, and provider trust compounded with temporal factors of the COVID-19 pandemic may have contributed to the null result. Trial registration ClinicalTrials.gov identifier: NCT04570488.
more »
« less
- Award ID(s):
- 1928614
- PAR ID:
- 10347138
- Date Published:
- Journal Name:
- Applied Clinical Informatics
- Volume:
- 13
- Issue:
- 03
- ISSN:
- 1869-0327
- Page Range / eLocation ID:
- 632 to 640
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Objectives. To assess the impact of the COVID-19 pandemic on mental distress in US adults. Methods. Participants were 5065 adults from the Understanding America Study, a probability-based Internet panel representative of the US adult population. The main exposure was survey completion date (March 10–16, 2020). The outcome was mental distress measured via the 4-item version of the Patient Health Questionnaire. Results. Among states with 50 or more COVID-19 cases as of March 10, each additional day was significantly associated with an 11% increase in the odds of moving up a category of distress (odds ratio = 1.11; 95% confidence interval = 1.01, 1.21; P = .02). Perceptions about the likelihood of getting infected, death from the virus, and steps taken to avoid infecting others were associated with increased mental distress in the model that included all states. Individuals with higher consumption of alcohol or cannabis or with history of depressive symptoms were at significantly higher risk for mental distress. Conclusions. These data suggest that as the COVID-19 pandemic continues, mental distress may continue to increase and should be regularly monitored. Specific populations are at high risk for mental distress, particularly those with preexisting depressive symptoms.more » « less
-
Abstract ObjectiveTo develop predictive models of coronavirus disease 2019 (COVID-19) outcomes, elucidate the influence of socioeconomic factors, and assess algorithmic racial fairness using a racially diverse patient population with high social needs. Materials and MethodsData included 7,102 patients with positive (RT-PCR) severe acute respiratory syndrome coronavirus 2 test at a safety-net system in Massachusetts. Linear and nonlinear classification methods were applied. A score based on a recurrent neural network and a transformer architecture was developed to capture the dynamic evolution of vital signs. Combined with patient characteristics, clinical variables, and hospital occupancy measures, this dynamic vital score was used to train predictive models. ResultsHospitalizations can be predicted with an area under the receiver-operating characteristic curve (AUC) of 92% using symptoms, hospital occupancy, and patient characteristics, including social determinants of health. Parsimonious models to predict intensive care, mechanical ventilation, and mortality that used the most recent labs and vitals exhibited AUCs of 92.7%, 91.2%, and 94%, respectively. Early predictive models, using labs and vital signs closer to admission had AUCs of 81.1%, 84.9%, and 92%, respectively. DiscussionThe most accurate models exhibit racial bias, being more likely to falsely predict that Black patients will be hospitalized. Models that are only based on the dynamic vital score exhibited accuracies close to the best parsimonious models, although the latter also used laboratories. ConclusionsThis large study demonstrates that COVID-19 severity may accurately be predicted using a score that accounts for the dynamic evolution of vital signs. Further, race, social determinants of health, and hospital occupancy play an important role.more » « less
-
The COVID-19 pandemic accelerated the adoption of remote patient monitoring technology, which offers exciting opportunities for expanded connected care at a distance. However, while the mode of clinicians’ interactions with patients and their health data has transformed, the larger framework of how we deliver care is still driven by a model of episodic care that does not facilitate this new frontier. Fully realizing a transformation to a system of continuous connected care augmented by remote monitoring technology will require a shift in clinicians’ and health systems’ approach to care delivery technology and its associated data volume and complexity. In this article, we present a solution that organizes and optimizes the interaction of automated technologies with human oversight, allowing for the maximal use of data-rich tools while preserving the pieces of medical care considered uniquely human. We review implications of this “augmented continuous connected care” model of remote patient monitoring for clinical practice and offer human-centered design-informed next steps to encourage innovation around these important issues.more » « less
-
Guillot, Gilles (Ed.)Diagnostic and prognostic models are increasingly important in medicine and inform many clinical decisions. Recently, machine learning approaches have shown improvement over conventional modeling techniques by better capturing complex interactions between patient covariates in a data-driven manner. However, the use of machine learning introduces technical and practical challenges that have thus far restricted widespread adoption of such techniques in clinical settings. To address these challenges and empower healthcare professionals, we present an open-source machine learning framework, AutoPrognosis 2.0, to facilitate the development of diagnostic and prognostic models. AutoPrognosis leverages state-of-the-art advances in automated machine learning to develop optimized machine learning pipelines, incorporates model explainability tools, and enables deployment of clinical demonstrators,withoutrequiring significant technical expertise. To demonstrate AutoPrognosis 2.0, we provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank, a prospective study of 502,467 individuals. The models produced by our automated framework achieve greater discrimination for diabetes than expert clinical risk scores. We have implemented our risk score as a web-based decision support tool, which can be publicly accessed by patients and clinicians. By open-sourcing our framework as a tool for the community, we aim to provide clinicians and other medical practitioners with an accessible resource to develop new risk scores, personalized diagnostics, and prognostics using machine learning techniques. Software:https://github.com/vanderschaarlab/AutoPrognosismore » « less
An official website of the United States government

